
Filter Design HDL Coder
For Use with MATLAB®

Computation

Visualization

Programming

User’s Guide
Version 1

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Filter Design HDL Coder User’s Guide

© COPYRIGHT 2004–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

ModelSim is a registered trademark of Mentor Graphics Corporation.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 Online only New for Version 1.0 (Release 14)
October 2004 Online only Updated for Version 1.1 (Release 14SP1)
March 2005 Online only Updated for Version 1.2 (Release 14SP2)
September 2005 Online only Updated for Version 1.3 (Release 14SP3)
March 2006 Online only Updated for Version 1.4 (Release 2006a)
September 2006 Online only Updated for Version 1.5 (Release 2006b)

Contents

Getting Started

1
What Is Filter Design HDL Coder? 1-2

Expected Users . 1-3
Key Features and Components . 1-3
FDATool Plug-In — the GUI . 1-4
Command-Line Interface . 1-6
Quantized Filters — the Input . 1-6
Filter Properties — Input Parameters 1-8
Generated HDL Files — the Output 1-9

Installation . 1-10
Checking Product Requirements . 1-10
Installing the Software . 1-10

Getting Help with Filter Design HDL Coder 1-11
Information Overview . 1-11
Online Help . 1-12
Using “What’s This?” Context-Sensitive Help 1-12
Demos and Tutorials . 1-13

Applying Filter Design HDL Coder to the Hardware
Design Process . 1-14

Tutorials: Generating HDL Code for Filters

2
Creating a Directory for Your Tutorial Files 2-2

Basic FIR Filter Tutorial . 2-3
Designing a Basic FIR Filter . 2-3
Quantizing the Basic FIR Filter . 2-5

v

Configuring and Generating the Basic FIR Filter’s VHDL
Code . 2-8

Getting Familiar with the Basic FIR Filter’s Generated
VHDL Code . 2-15

Verifying the Basic FIR Filter’s Generated VHDL Code . . 2-17

Optimized FIR Filter Tutorial . 2-23
Designing the FIR Filter . 2-23
Quantizing the FIR Filter . 2-25
Configuring and Generating the FIR Filter’s Optimized

Verilog Code . 2-28
Getting Familiar with the FIR Filter’s Optimized Generated

Verilog Code . 2-35
Verifying the FIR Filter’s Optimized Generated Verilog

Code . 2-37

IIR Filter Tutorial . 2-44
Designing an IIR Filter . 2-44
Quantizing the IIR Filter . 2-46
Configuring and Generating the IIR Filter’s VHDL Code . . 2-50
Getting Familiar with the IIR Filter’s Generated VHDL

Code . 2-57
Verifying the IIR Filter’s Generated VHDL Code 2-58

Generating HDL Code for a Filter Design

3
Overview of Generating HDL Code for a Filter

Design . 3-3

Opening the Generate HDL Dialog Box 3-5

What Is Generated by Default? . 3-10
Default Settings for Generated Files 3-10
Default Generation of Script Files . 3-11
Default Settings for Register Resets 3-11
Default Settings for General HDL Code 3-11
Default Settings for Code Optimizations 3-13
Default Settings for Test Benches . 3-13

vi Contents

What Are Your HDL Requirements? 3-15

Setting the Target Language . 3-21

Setting the Names and Location for Generated HDL
Files . 3-22
Setting Filter Entity and General File Naming Strings . . . 3-23
Redirecting Filter Design HDL Coder Output 3-24
Setting the Postfix String for VHDL Package Files 3-25
Splitting Entity and Architecture Code into Separate

Files . 3-26

Customizing Reset Specifications 3-29
Setting the Reset Style for Registers 3-29
Setting the Asserted Level for the Reset Input Signal 3-30

Customizing the HDL Code . 3-32
Specifying a Header Comment . 3-33
Specifying a Prefix for Filter Coefficients 3-35
Setting the Postfix String for Resolving Entity or Module

Name Conflicts . 3-36
Setting the Postfix String for Resolving HDL Reserved

Word Conflicts . 3-37
Setting the Postfix String for Process Block Labels 3-40
Naming HDL Ports . 3-42
Specifying the HDL Data Type for Data Ports 3-43
Suppressing Extra Input and Output Registers 3-45
Minimizing Quantization Noise for Fixed-Point Filters . . . 3-46
Representing Constants with Aggregates 3-48
Unrolling and Removing VHDL Loops 3-49
Using the VHDL rising_edge Function 3-50
Suppressing the Generation of VHDL Inline

Configurations . 3-52
Specifying VHDL Syntax for Concatenated Zeros 3-53
Suppressing Verilog Time Scale Directives 3-54
Specifying Input Type Treatment for Addition and

Subtraction Operations . 3-55

Setting Optimizations . 3-57
Optimizing Generated Code for HDL 3-58
Optimizing Coefficient Multipliers . 3-59
Optimizing Final Summation for FIR Filters 3-60

vii

Speed vs. Area Optimizations for FIR Filters 3-61
Distributed Arithmetic for FIR Filters 3-71
Optimizing the Clock Rate with Pipeline Registers 3-81
Setting Optimizations for Synthesis 3-83

Generating Code for Multirate Filters 3-85
Supported Multirate Filter Types . 3-85
Generating Mutirate Filter Code . 3-85
Code Generation Options for Multirate Filters 3-85

Generating Code for Cascade Filters 3-92
Supported Cascade Filter Types . 3-92
Generating Cascade Filter Code . 3-92

Customizing the Test Bench . 3-95
Renaming the Test Bench . 3-95
Specifying a Test Bench Type . 3-97
Configuring the Clock . 3-99
Configuring Resets . 3-101
Setting a Hold Time for Data Input Signals 3-103
Setting an Error Margin for Optimized Filter Code 3-104
Setting Test Bench Stimuli . 3-106

Generating the HDL Code . 3-109

Generating Scripts for EDA Tools 3-110
Enabling and Disabling Script Generation 3-110
Default Script Generation . 3-110
Customizing Script Names . 3-111
Customizing Script Code . 3-111
Mixed-Language Scripts . 3-114

Testing a Filter Design

4
Overview of the Test Methods . 4-2

Testing with an HDL Test Bench . 4-3

viii Contents

Generating the Filter and Test Bench HDL Code 4-3
Starting the Simulator . 4-7
Compiling the Generated Filter and Test Bench Files 4-7
Running the Test Bench Simulation 4-8

Testing with a ModelSim Tcl/Tk .do File 4-12
Generating the Filter HDL Code and Test Bench .do

File . 4-12
Starting ModelSim . 4-16
Compiling the Generated Filter File 4-16
Execute the ModelSim .do File . 4-17

Properties — By Category

5
Language Selection Properties . 5-2

File Naming and Location Properties 5-2

Reset Properties . 5-2

Header Comment and General Naming Properties 5-3

Port Properties . 5-3

Advanced Coding Properties . 5-4

Optimization Properties . 5-6

Test Bench Properties . 5-6

Script Generation Properties . 5-7

ix

Properties — Alphabetical List

6

Functions — Alphabetical List

7

Examples

A
Tutorials . A-2

Basic FIR Filter Tutorial . A-2

Optimized FIR Filter Tutorial . A-2

IIR Filter Tutorial . A-2

Speed vs. Area Optimizations for FIR Filters A-3

Index

x Contents

1

Getting Started

This chapter introduces you to Filter Design HDL Coder by discussing the
following topics:

What Is Filter Design HDL Coder?
(p. 1-2)

Describes key product features and
components

Installation (p. 1-10) Required products; required VHDL
and Verilog versions; how to install
and set up Filter Design HDL Coder

Getting Help with Filter Design
HDL Coder (p. 1-11)

Discusses ways of applying Filter
Design HDL Coder to the hardware
design process, including signal
analysis, algorithm verification, and
reference design validation

Applying Filter Design HDL Coder
to the Hardware Design Process
(p. 1-14)

Identifies and explains how to gain
access to available documentation
and online help resources

1 Getting Started

What Is Filter Design HDL Coder?
Filter Design HDL Coder accelerates the development of application-specific
integrated circuit (ASIC) and field programmable gate array (FPGA)
designs and bridges the gap between system-level design and hardware
development by generating hardware description language (HDL) code based
on filters developed in MATLAB®. Currently, system designers and hardware
developers use HDLs, such as very high speed integrated circuit (VHSIC)
hardware description language (VHDL) and Verilog, to develop hardware
designs. Although HDLs provide a proven method for hardware design,
the task of coding filter designs, and hardware designs in general, is labor
intensive and the use of these languages for algorithm and system-level
design is not optimal.

Using Filter Design HDL Coder, system architects and designers can spend
more time on fine-tuning algorithms and models through rapid prototyping
and experimentation and less time on HDL coding. Architects and designers
can efficiently design, analyze, simulate, and transfer system designs to
hardware developers.

In a typical use scenario, an architect or designer uses the Filter Design
Toolbox, its Filter Design and Analysis Tool (FDATool), and Filter Design
HDL Coder to design a filter. Then, with the click of a button, Filter Design
HDL Coder generates a VHDL or Verilog implementation of the design
and a corresponding test bench. The generated code adheres to a clean
HDL coding style that enables architects and designers to quickly address
customizations, as needed. The test bench feature increases confidence in
the correctness of the generated code and saves potential time spent on test
bench implementation.

The following sections discuss

• “Expected Users” on page 1-3

• “Key Features and Components” on page 1-3

• “FDATool Plug-In — the GUI ” on page 1-4

• “Command-Line Interface” on page 1-6

• “Quantized Filters — the Input” on page 1-6

1-2

What Is Filter Design HDL Coder?

• “Filter Properties — Input Parameters” on page 1-8

• “Generated HDL Files — the Output” on page 1-9

Expected Users
Filter Design HDL Coder users are system and hardware architects and
designers who develop, optimize, and verify hardware signal filters. These
designers are experienced with VHDL or Verilog, but can benefit greatly from
a tool that automates HDL code generation. The Filter Design HDL Coder
interface provides designers with efficient means for creating test signals
and test benches that verify algorithms, validating models against standard
reference designs, and translate legacy HDL descriptions into system-level
views.

Users are also expected to have prerequisite knowledge in the following
subject areas:

• Hardware design and system integration

• VHDL or Verilog

• MATLAB

• Filter Design Toolbox

• HDL simulators, such as ModelSim®

Key Features and Components
Key features and components of Filter Design HDL Coder include

• Graphical user interface (GUI) plug-in to the Filter Design and Analysis
Tool (FDATool)

• MATLAB command line interface

• Support for the following discrete-time filter structures:

- Finite impulse response (FIR)

- Antisymmetric FIR

- Transposed FIR

- Symmetric FIR

1-3

1 Getting Started

- Second-order section (SOS) infinite impulse response (IIR) Direct Form I

- SOS IIR Direct Form I transposed

- SOS IIR Direct Form II

- SOS IIR Direct Form II transposed

- Discrete-Time Scalar

- Delay filter

• Support for the following multirate filter structures:

- Cascaded Integrator Comb (CIC) interpolation

- Cascaded Integrator Comb (CIC) decimation

- Direct-Form Transposed FIR Polyphase Decimator

- Direct-Form FIR Polyphase Interpolator

- Direct-Form FIR Polyphase Decimator

- FIR Hold Interpolator

- FIR Linear Interpolator

• Support for cascade filters (multirate and discrete-time)

• Generation of code that adheres to a clean HDL coding style

• Options for optimizing numeric results of generated HDL code

• Options for controlling the contents and style of the generated HDL code
and test bench

• Test bench generation for validating the generated HDL filter code

• VHDL, Verilog, and ModelSim Tcl/Tk DO file test bench options

• Automatic generation of scripts for third-party simulation and synthesis
tools

FDATool Plug-In — the GUI
The Filter Design HDL Coder graphical user interface (GUI) is a plug-in
component of the FDATool and is accessible from the FDATool Targets menu.
Given that you have designed, or at least opened, a quantized filter in the
FDATool, you can generate HDL code for that filter with the Generate HDL

1-4

What Is Filter Design HDL Coder?

dialog box. To open this dialog box, clickTargets > Generate HDL . The
main dialog box displays the filter’s structure and order in the title bar. The
following figure indicates that the input is a Direct Form II transposed filter
with an order of 50.

Chapter 3, “Generating HDL Code for a Filter Design” explains how to use the
GUI to customize HDL code generation to meet project-specific requirements.

1-5

1 Getting Started

Command-Line Interface
You also have the option of generating HDL code for a filter with the
Filter Design HDL Coder command-line interface. You can apply functions
interactively at the MATLAB command line or programmatically in an M-file.
The following table lists available functions with brief descriptions. For more
detail, see Chapter 7, “Functions — Alphabetical List”.

Function Purpose

generatehdl Generate HDL code for quantized filter

generatetb Generate test bench for quantized filter

generatetbstimulus Generate and return test bench stimuli

Quantized Filters — the Input
The input to Filter Design HDL Coder is a quantized filter that you design
and quantize in one of two ways:

• Design and quantize the filter with the Filter Design Toolbox

• Design the filter with the Signal Processing Toolbox and then quantize it
with the Filter Design Toolbox

Filter Design HDL Coder supports the following filter structures.

• Discrete-time:

- Finite impulse response (FIR)

- Antisymmetric FIR

- Transposed FIR

- Symmetric FIR

- Second-order section (SOS) infinite impulse response (IIR) Direct Form I

- SOS IIR Direct Form I transposed

- SOS IIR Direct Form II

- SOS IIR Direct Form II transposed

- Discrete-Time Scalar

1-6

What Is Filter Design HDL Coder?

- Delay filter

• Multirate:

- Cascaded Integrator Comb (CIC) interpolation

- Cascaded Integrator Comb (CIC) decimation

- Direct-Form Transposed FIR Polyphase Decimator

- Direct-Form FIR Polyphase Interpolator

- Direct-Form FIR Polyphase Decimator

- FIR Hold Interpolator

- FIR Linear Interpolator

• Cascade filters (multirate and discrete-time)

Each of these structures, (with the exception of the CIC filter structures),
supports fixed-point, quantization type, and floating-point (double)
realizations.

The CIC filter types support only fixed-point realizations.

The FIR structures also support unsigned fixed-point realizations.

Note Filter Design HDL Coder does not support zero order sections for
IIR filters.

The quantized filter must have the following data format characteristics:

• Fixed-point signed or unsigned

• Double floating-point precision

When designing a filter for code generation with Filter Design HDL Coder,
consider how filter coefficients are specified. If the coefficients for a filter are
small in value and the word size and binary point are large, it is possible for
Filter Design HDL Coder to compute integer coefficients that are numerically
inaccurate. Double-precision coefficients support up to 53 bits of precision.

1-7

1 Getting Started

For information on how to design filter objects and specify filter coefficients,
see the Filter Design Toolbox and Signal Processing Toolbox documentation.
For information on quantizing filters, see the Filter Design Toolbox
documentation.

Filter Properties — Input Parameters
Filter Design HDL Coder generates filter and test bench HDL code for a
specified quantized filter based on the settings of a collection of property name
and property value pairs. The properties and their values

• Contribute to the naming of language elements

• Specify port parameters

• Determine the use of advanced HDL coding features

All properties have default settings. However, you can customize the HDL
output to meet project specifications by adjusting the property settings with
the Filter Design HDL Coder GUI or command line interface. As an FDATool
plug-in, the GUI enables you to set properties associated with

• The HDL language specification

• Filename and location specifications

• Reset specifications

• HDL code customizations

• HDL code optimizations

• Test bench customizations

You can set the same filter properties by specifying property name and
property value pairs with the functions generatehdl, generatetb, and
generatetbstimulus interactively at the MATLAB command line or in
M-code.

The property names and property values are not case sensitive and, when
specifying them, you can abbreviate them to the shortest unique string.

1-8

What Is Filter Design HDL Coder?

This chapter explains how to apply property settings to customize HDL
code generation for a specific application. For lists and descriptions of the
properties and functions, see Chapter 5, “Properties — By Category” and
Chapter 7, “Functions — Alphabetical List”, respectively.

Generated HDL Files — the Output
Based on the interface you use and the input data you specify, Filter Design
HDL Coder generates filter and filter test bench HDL files as output. If
the filter design requires a VHDL package, Filter Design HDL Coder also
generates a package file.

The GUI generates all output files at the end of a dialog session. If you choose
to use the command line interface, you generate the filter and test bench HDL
files separately with calls to the functions generatehdl and generatetb.

By default, Filter Design HDL Coder places the output files in a subdirectory
named hdlsrc, under the current MATLAB directory, and names the files as
follows, where name is the value of the Name property.

Language File Name

Verilog Filter name.v

Filter test bench name_tb.v

VHDL Filter name.vhd

Filter test bench name_tb.vhd

Filter package (if
required)

name_pkg.vhd

1-9

1 Getting Started

Installation
The following sections discuss installation:

• “Checking Product Requirements” on page 1-10

• “Installing the Software” on page 1-10

Checking Product Requirements
Filter Design HDL Coder requires the following MathWorks products:

• MATLAB

• Filter Design Toolbox

• Signal Processing Toolbox

• Fixed-Point Toolbox

VHDL and Verilog Language Support
Filter Design HDL Coder is compatible with HDL compilers, simulators and
other tools that support

• VHDL versions 87, 93, and 02.

Exception: VHDL test benches using double precision data types do not
support VHDL version 87. (See also “Compiling the Generated Filter and
Test Bench Files” on page 4-7)

• Verilog-2001 (IEEE 1364-2001) or later.

Installing the Software
For information on installing the required software listed above, and optional
software, see the MATLAB installation documentation for your platform.

1-10

Getting Help with Filter Design HDL Coder

Getting Help with Filter Design HDL Coder
The following sections explain how to get help with using Filter Design HDL
Coder:

• “Information Overview” on page 1-11

• “Online Help” on page 1-12

• “Using “What’s This?” Context-Sensitive Help” on page 1-12

• “Demos and Tutorials” on page 1-13

Information Overview
The following information is available with this product:

Chapter 1, “Getting Started” Explains what the product is, how to
install it, its applications in the hardware
design process, and how to access product
documentation and online help.

Chapter 2, “Tutorials:
Generating HDL Code for
Filters”

Guides you through the process of
generating HDL code for a sampling of
filters.

Chapter 3, “Generating HDL
Code for a Filter Design”

Explains how to use Filter Design HDL
Coder to generate HDL code for a filter
design. Provides details on how HDL code
is mapped to MATLAB code and vice versa.

Chapter 4, “Testing a Filter
Design”

Explains how to apply generated test
benches.

Chapter 5, “Properties — By
Category”

Lists filter properties by category.

Chapter 6, “Properties —
Alphabetical List”

Provides descriptions of properties
organized alphabetically by property
name.

Chapter 7, “Functions —
Alphabetical List”

Provides descriptions of the functions
available in the product’s command line
interface.

1-11

1 Getting Started

Online Help
The following online help is available:

• Online help in the MATLAB Help browser. Click the Filter Design HDL
Coder product link in the browser’s Contents pane.

• Context-sensitive “What’s This?” help for items that appear in the Filter
Design HDL Coder GUI. Click a GUI Help button or right-click on a GUI
item or within a specific frame in a GUI dialog box to display help on that
dialog, item, or frame. For more information on using the context-sensitive
help, see “Using “What’s This?” Context-Sensitive Help” on page 1-12.

• M-help for the command line interface functions generatehdl, generatetb,
and generatetbstimulus is accessible with the MATLAB doc and help
commands. For example

doc generatehdl
help generatehdl

Using “What’s This?” Context-Sensitive Help
“What’s This?” context-sensitive help topic is available for each dialog box,
pane, and option in the Filter Design HDL Coder GUI. Use the “What’s This?”
help as needed while using the GUI to configure options that control the
contents and style of the generated HDL code and test bench.

To use the “What’s This?” help, do the following:

1 Place your cursor over the label or control for an option or in the background
for a pane or dialog box.

1-12

Getting Help with Filter Design HDL Coder

2 Right-click. A What’s This? button appears. The following display shows
the What’s This? button appearing after a right-click on the Name option
in the HDL filter pane of the Generate HDL dialog box.

3 Click What’s This? Filter Design HDL Coder opens context-sensitive help
that describes the option, pane, or dialog box.

Demos and Tutorials
Filter Design HDL Coder provides demos and tutorials to help you get started.
The demos give you a quick view of the product’s capabilities and examples
of how you might apply the product. You can run them with limited product
exposure.

The tutorials provide procedural instruction on how to apply product features.
The following topics, in Chapter 2, “Tutorials: Generating HDL Code for
Filters”, guide you through three tutorials:

• “Basic FIR Filter Tutorial” on page 2-3

• “Optimized FIR Filter Tutorial” on page 2-23

• “IIR Filter Tutorial” on page 2-44

1-13

1 Getting Started

Applying Filter Design HDL Coder to the Hardware Design
Process

The basic workflow for applying Filter Design HDL Coder to the hardware
design process requires the following steps:

1 Design a filter with the Signal Processing or Filter Design Toolbox.

2 Quantize the filter with the Filter Design Toolbox.

3 Review the property settings that Filter Design HDL Coder applies to
generated HDL code by default.

4 Adjust property settings to customize the generated HDL code, as necessary.

5 Generate the filter and test bench code.

6 Consider and, if appropriate, apply optimization options.

7 Test the generated code in a simulation.

1-14

Applying Filter Design HDL Coder to the Hardware Design Process

The following figure shows these steps in a flow diagram.

�������	
����	

�	����
����	

��
�������	��

�	�	
��	
���
���	
��

����	

���

�	��
�	���

�������	�

���	

�������	

��

�	�

�	�
���
�
��	
��	�

�	�

���
�
��	
�
�	������
�!�

�	�

��

�	�
������������
�
��	
��	�

1-15

1 Getting Started

1-16

2

Tutorials: Generating HDL
Code for Filters

This chapter guides you through the basic steps for generating and testing
HDL code for a few filter designs. Topics include the following:

Creating a Directory for Your
Tutorial Files (p. 2-2)

Suggests that you create a directory
to store files generated as you
complete the tutorials presented in
this chapter

Basic FIR Filter Tutorial (p. 2-3) Guides you through the steps
for designing a basic FIR filter,
generating VHDL code for the filter,
and verifying the VHDL code with a
generated test bench

Optimized FIR Filter Tutorial
(p. 2-23)

Guides you through the steps for
designing an optimized FIR filter,
generating Verilog code for the filter,
and verifying the Verilog code with a
generated test bench

IIR Filter Tutorial (p. 2-44) Guides you through the steps for
designing an IIR filter, generating
VHDL code for the filter, and
verifying the VHDL code with a
generated test bench

2 Tutorials: Generating HDL Code for Filters

Creating a Directory for Your Tutorial Files
Set up a writable working directory outside the scope of your MATLAB
installation area to store files that will be generated as you complete your
Filter Design HDL Coder tutorial work. The tutorial instructions assume that
you create the directory hdlfilter_tutorials on drive D.

2-2

Basic FIR Filter Tutorial

Basic FIR Filter Tutorial
This section guides you through the steps for designing a basic quantized
discrete-time FIR filter, generating VHDL code for the filter, and verifying
the VHDL code with a generated test bench. The procedure is presented in
the following topics:

• “Designing a Basic FIR Filter” on page 2-3

• “Quantizing the Basic FIR Filter” on page 2-5

• “Configuring and Generating the Basic FIR Filter’s VHDL Code” on page
2-8

• “Getting Familiar with the Basic FIR Filter’s Generated VHDL Code” on
page 2-15

• “Verifying the Basic FIR Filter’s Generated VHDL Code” on page 2-17

Designing a Basic FIR Filter
One way of designing a filter in the MATLAB environment is to use the
FDATool. This section assumes you are familiar with the MATLAB user
interface and the FDATool. The following instructions guide you through the
procedure of designing and creating a basic FIR filter:

1 Start MATLAB.

2 Set your MATLAB current directory to the directory you created in
“Creating a Directory for Your Tutorial Files” on page 2-2.

2-3

2 Tutorials: Generating HDL Code for Filters

3 Start the FDATool by entering the fdatool command in the MATLAB
Command Window. MATLAB displays the Filter Design & Analysis Tool
dialog box.

4 In the Filter Design & Analysis Tool dialog box, check that the following
filter options are set:

2-4

Basic FIR Filter Tutorial

Option Value

Response Type Lowpass

Design Method FIR Equiripple

Filter Order Minimum order

Options Density Factor: 20

Frequency Specifications Units: Hz

Fs: 48000

Fpass: 9600

Fstop: 12000

Magnitude Specifications Units: dB

Apass: 1

Astop: 80

These settings are for the default filter design that the FDATool creates
for you. If you do not need to make any changes and Design Filter is
grayed out, you are done and can skip to “Quantizing the Basic FIR Filter”
on page 2-5.

5 If you modified any of the options listed in step 4, click Design Filter. The
FDATool creates a filter for the specified design and displays the following
message in the FDATool status bar when the task is complete.

Designing Filter... Done

For more information on designing filters with the FDATool, see
“FDATool: A Filter Design and Analysis GUI” in the Filter Design Toolbox
documentation.

Quantizing the Basic FIR Filter
You should quantize filters for HDL code generation. To quantize your filter,

1 Open the basic FIR filter design you created in “Designing a Basic FIR
Filter” on page 2-3 if it is not already open.

2-5

2 Tutorials: Generating HDL Code for Filters

2 Click the Set Quantization Parameters button in the left-side tool
bar. The FDATool displays a Filter arithmetic menu in the bottom half
of its dialog box.

3 Select Fixed-point from the Filter arithmetic list. Then select Specify
all from the Filter precision list. The FDATool displays the first of

2-6

Basic FIR Filter Tutorial

three tabbed panels of quantization parameters across the bottom half
of its dialog box.

You use the quantization options to test the effects of various settings with
a goal of optimizing the quantized filter’s performance and accuracy.

4 Set the quantization parameters as follows:

2-7

2 Tutorials: Generating HDL Code for Filters

Tab Parameter Setting

Coefficients Numerator word length 16

Best-precision fraction lengths Selected

Use unsigned representation Cleared

Scale the numerator coefficients
to fully utilize the entire dynamic
range

Cleared

Input/Output Input word length 16

Input fraction length 15

Output word length 16

Filter
Internals

Round towards Floor

Overflow mode Saturate

Accum. word length 40

5 Click Apply.

For more information on quantizing filters, see the FDATool and Filter Design
Toolbox documentation.

Configuring and Generating the Basic FIR Filter’s
VHDL Code
After you quantize your filter, you are ready to use the Filter Design HDL
Coder to configure and generate the filter’s VHDL code. This section guides
you through the procedure for starting the Filter Design HDL Coder GUI,
setting some options, and generating the VHDL code and a test bench for the
basic FIR filter you designed and quantized in “Designing a Basic FIR Filter”
on page 2-3 and “Quantizing the Basic FIR Filter” on page 2-5.

1 Start the Filter Design HDL Coder by selecting Targets > Generate HDL
in the FDATool dialog box. The FDATool displays the Generate HDL dialog.

2-8

Basic FIR Filter Tutorial

2 Find the Filter Design HDL Coder online help. Use the online help to learn
about product details or to get answers to questions as you work with the
designer.

a In the MATLAB window, click the Help button in the toolbar or
click Help > Full Product Family Help.

b In the Help browser’s Contents pane, select Filter Design HDL Coder.

c Minimize the Help browser.

2-9

2 Tutorials: Generating HDL Code for Filters

3 Click the Help button. The FDATool displays context-sensitive help for the
dialog box. As necessary, use the Help button on the other Filter Design
HDL Coder dialogs for context-sensitive help on those dialog views.

4 Close the Help window.

5 Place your cursor over the Name label or text box in the HDL filter pane
of the Generate HDL dialog box and right-click. A What’s This? button
appears.

6 Click What’s This? The Filter Design HDL Coder opens context-sensitive
help that describes the Name option. Use the context-sensitive help as
needed while using the GUI to configure options that control the contents
and style of the generated HDL code and test bench. A help topic is
available for each option and pane.

7 In the Name text box of the HDL filter pane, replace the default name
with basicfir. This option names the VHDL entity and the file that is
to contain the filter’s VHDL code.

8 In the Name text box of the Test bench types pane, replace the default
name with basicfir_tb. This option names the generated test bench file.

2-10

Basic FIR Filter Tutorial

9 Click HDL Options. The Filter Design HDL Coder displays the HDL
Options dialog box.

10 In the Comment in header text box, type Tutorial - Basic FIR Filter
and then click Apply. The Filter Design HDL Coder adds the comment to
the end of the header comment block in each generated file.

11 Select the Ports tab. The Ports pane appears.

2-11

2 Tutorials: Generating HDL Code for Filters

12 Change the names of the input and output ports. Replace filter_in with
data_in and filter_out with data_out.

13 Clear the check box for the Add input register option. The Ports pane
should now look like the following.

14 Click Apply and then OK to register your changes and close the HDL
Options dialog box.

2-12

Basic FIR Filter Tutorial

15 Click Test Bench Options. The Filter Design HDL Coder displays the
Test Bench Options dialog box.

You use this dialog box to customize the generated test bench.

16 For this tutorial, apply the default settings by clicking OK.

17 In the Generate HDL dialog box, click Generate to start the code
generation process.

The Filter Design HDL Coder displays the following messages in the
MATLAB Command Window as it generates the filter and test bench
VHDL files:

Starting VHDL code generation process for filter: basicfir

Generating basicfir.vhd file in: hdlsrc

Starting generation of basicfir VHDL entity

Starting generation of basicfir VHDL architecture

HDL latency is 1 samples

Successful completion of VHDL code generation process for filter: basicfir

Starting generation of VHDL Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.

2-13

2 Tutorials: Generating HDL Code for Filters

Generating VHDL file basicfir_tb.vhd in: hdlsrc

Please wait

Done generating VHDL test bench.

As the messages indicate, the Filter Design HDL Coder creates the
directory hdlsrc under your current working directory and places the files
basicfir.vhd and basicfir_tb.vhd in that directory.

The generated VHDL code has the following characteristics:

• VHDL entity named basicfir.

• Registers that use asynchronous resets when the reset signal is active
high (1).

• Ports have the following names:

VHDL Port Name

Input data_in

Output data_out

Clock input clk

Clock enable
input

clk_enable

Reset input reset

• An extra register for handling filter output.

• Clock input, clock enable input and reset ports are of type STD_LOGIC
and data input and output ports are of type STD_LOGIC_VECTOR.

• Coefficients are named coeffn, where n is the coefficient number,
starting with 1.

• Type safe representation is used when zeros are concatenated: '0'
& '0'...

• Registers are generated with the statement ELSIF clk'event AND
clk='1' THEN rather than with the rising_edge function.

• The postfix string _process is appended to process names.

The generated test bench:

2-14

Basic FIR Filter Tutorial

• Is a portable VHDL file.

• Forces clock, clock enable, and reset input signals.

• Forces the clock enable input signal to active high.

• Drives the clock input signal high (1) for 5 nanoseconds and low (0) for
5 nanoseconds.

• Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.

• Applies a hold time of 2 nanoseconds to data input signals.

• Applies impulse, step, ramp, chirp, and white noise stimulus types.

18 When you have finished generating code, click Close to close the Generate
HDL dialog box.

Getting Familiar with the Basic FIR Filter’s Generated
VHDL Code
Get familiar with the filter’s generated VHDL code by opening and browsing
through the file basicfir.vhd in an ASCII or HDL simulator editor:

1 Open the generated VHDL filter file basicfir.vhd.

2 Search for basicfir. This line identifies the VHDL module, using the
string you specified for the Name option in the HDL filter pane. See step
5 in “Configuring and Generating the Basic FIR Filter’s VHDL Code” on
page 2-8.

3 Search for Tutorial. This is where the Filter Design HDL Coder places
the text you entered for the Comment in header option. See step 10 in
“Configuring and Generating the Basic FIR Filter’s VHDL Code” on page
2-8.

4 Search for HDL Code. This section lists the Filter Design HDL Coder
options you modified in “Configuring and Generating the FIR Filter’s
Optimized Verilog Code” on page 2-28.

5 Search for Filter Settings. This section describes the filter design and
quantization settings as you specified in “Designing a Basic FIR Filter” on
page 2-3 and “Quantizing the Basic FIR Filter” on page 2-5.

2-15

2 Tutorials: Generating HDL Code for Filters

6 Search for ENTITY. This line names the VHDL entity, using the string
you specified for the Name option in the HDL filter pane. See step 5 in
“Configuring and Generating the Basic FIR Filter’s VHDL Code” on page
2-8.

7 Search for PORT. This PORT declaration defines the filter’s clock, clock
enable, reset, and data input and output ports. The ports for clock, clock
enable, and reset signals are named with default strings. The ports for data
input and output are named with the strings you specified for the Input
port and Output port options on the Ports tab of the HDL Options dialog
box. See step 12 in “Configuring and Generating the Basic FIR Filter’s
VHDL Code” on page 2-8.

8 Search for Constants. This is where the coefficients are defined. They are
named using the default naming scheme,coeffn, where n is the coefficient
number, starting with 1.

9 Search for Signals. This is where the filter’s signals are defined.

10 Search for process. The PROCESS block name Delay_Pipeline_process
includes the default PROCESS block postfix string _process.

11 Search for IF reset. This is where the reset signal is asserted. The default,
active high (1), was specified. Also note that the PROCESS block applies the
default asynchronous reset style when generating VHDL code for registers.

12 Search for ELSIF. This is where the VHDL code checks for rising edges
when the filter operates on registers. The default ELSIF clk'event
statement is used instead of the optional rising_edge function.

13 Search for Output_Register. This is where filter output is written to
an output register. The Filter Design HDL Coder generates the code for
this register by default. In step 13 in “Configuring and Generating the
Basic FIR Filter’s VHDL Code” on page 2-8, you cleared the Add input
register option, but left the Add output register selected. Also note that
the PROCESS block name Output_Register_process includes the default
PROCESS block postfix string _process.

14 Search for data_out. This is where the filter writes its output data.

2-16

Basic FIR Filter Tutorial

Verifying the Basic FIR Filter’s Generated VHDL Code
This section explains how to verify the basic FIR filter’s generated VHDL code
with the generated VHDL test bench. Although this tutorial uses ModelSim
as the tool for compiling and simulating the VHDL code, you can use any
VHDL simulation tool package.

To verify the filter code, complete the following steps:

1 Start your simulator. When you start ModelSim, a screen display similar to
the following appears.

2 Set the current directory to the directory that contains your generated
VHDL files. For example:

cd d:/hdlfilter_tutorials/hdlsrc

3 If necessary, create a design library to store the compiled VHDL entities,
packages, architectures, and configurations. In ModelSim, you can create a
design library with the vlib command.

vlib work

2-17

2 Tutorials: Generating HDL Code for Filters

4 Compile the generated filter and test bench VHDL files. In ModelSim, you
compile VHDL code with the vcom command. The following ModelSim
commands compile the filter and filter test bench VHDL code.

vcom basicfir.vhd
vcom basicfir_tb.vhd

The following screen display shows this command sequence and
informational messages displayed during compilation.

5 Load the test bench for simulation. The procedure for doing this varies
depending on the simulator you are using. In ModelSim, you load the test
bench for simulation with the vsim command. For example:

vsim work.basicfir_tb

2-18

Basic FIR Filter Tutorial

The following ModelSim display shows the results of loading
work.basicfir_tb with the vsim command.

6 Open a display window for monitoring the simulation as the test bench
runs. For example, in ModelSim, you can use the following command
to open a wave window to view the results of the simulation as HDL
waveforms:

add wave *

2-19

2 Tutorials: Generating HDL Code for Filters

The following wave window displays.

7 To start running the simulation, issue the appropriate command for your
simulator. For example, in ModelSim, you can start a simulation with
the run command.

2-20

Basic FIR Filter Tutorial

The following ModelSim display shows the run -all command being used
to start a simulation.

As your test bench simulation runs, watch for error messages. If any error
messages appear, you must interpret them as they pertain to your filter
design and the HDL customizations you applied with the Filter Design
HDL Coder. You must determine whether the results are expected based on
the customizations you specified when generating the filter VHDL code.

Note The failure message that appears in the preceding display is not
flagging an error. If the message includes the string Test Complete, the
test bench has successfully run to completion. The Failure part of the
message is tied to the mechanism the Filter Design HDL Coder uses to
end the simulation.

2-21

2 Tutorials: Generating HDL Code for Filters

The following wave window shows the simulation results as HDL
waveforms.

2-22

Optimized FIR Filter Tutorial

Optimized FIR Filter Tutorial
This section guides you through the steps for designing an optimized
quantized discrete-time FIR filter, generating Verilog code for the filter, and
verifying the Verilog code with a generated test bench. The procedure is
presented in the following topics:

• “Designing the FIR Filter” on page 2-23

• “Quantizing the FIR Filter” on page 2-25

• “Configuring and Generating the FIR Filter’s Optimized Verilog Code”
on page 2-28

• “Getting Familiar with the FIR Filter’s Optimized Generated Verilog Code”
on page 2-35

• “Verifying the FIR Filter’s Optimized Generated Verilog Code” on page 2-37

Designing the FIR Filter
One way of designing a filter in the MATLAB environment is to use the
FDATool. This section guides you through the procedure of designing and
creating a filter for an FIR filter to which you will apply VHDL optimizations.
These instructions assume you are familiar with the MATLAB user interface
and the FDATool:

1 Start MATLAB.

2 Set your MATLAB current directory to the directory you created in
“Creating a Directory for Your Tutorial Files” on page 2-2.

2-23

2 Tutorials: Generating HDL Code for Filters

3 Start the FDATool by entering the fdatool command in the MATLAB
Command Window. MATLAB displays the Filter Design & Analysis Tool
dialog box.

4 In the Filter Design & Analysis Tool dialog box, set the following filter
options:

2-24

Optimized FIR Filter Tutorial

Option Value

Response Type Lowpass

Design Method FIR Equiripple

Filter Order Minimum order

Options Density Factor: 20

Frequency Specifications Units: Hz

Fs: 48000

Fpass: 9600

Fstop: 12000

Magnitude Specifications Units: dB

Apass: 1

Astop: 80

These settings are for the default filter design that the FDATool creates for
you. If you do not need to make any changes and Design Filter is grayed
out, you are done and can skip to “Quantizing the FIR Filter” on page 2-25.

5 Click Design Filter. The FDATool creates a filter for the specified design.
The following message appears in the FDATool status bar when the task
is complete.

Designing Filter... Done

For more information on designing filters with the FDATool, see the
FDATool and Filter Design Toolbox documentation.

Quantizing the FIR Filter
You should quantize filters for HDL code generation. To quantize your filter,

1 Open the FIR filter design you created in “Optimized FIR Filter Tutorial”
on page 2-23 if it is not already open.

2-25

2 Tutorials: Generating HDL Code for Filters

2 Click the Set Quantization Parameters button in the left-side toolbar.
The FDATool displays a Filter arithmetic menu in the bottom half of
its dialog box.

2-26

Optimized FIR Filter Tutorial

3 Select Fixed-point from the list. Then select Specify all from the Filter
precision list. The FDATool displays the first of three tabbed panels of
quantization parameters across the bottom half of its dialog box.

You use the quantization options to test the effects of various settings with
a goal of optimizing the quantized filter’s performance and accuracy.

4 Set the quantization parameters as follows:

2-27

2 Tutorials: Generating HDL Code for Filters

Tab Parameter Setting

Coefficients Numerator word length 16

Best-precision fraction lengths Selected

Use unsigned representation Cleared

Scale the numerator coefficients
to fully utilize the entire dynamic
range

Cleared

Input/Output Input word length 16

Input fraction length 15

Output word length 16

Filter
Internals

Round towards Floor

Overflow mode Saturate

Accum. word length 40

5 Click Apply.

For more information on quantizing filters, see the FDATool and Filter Design
Toolbox documentation.

Configuring and Generating the FIR Filter’s Optimized
Verilog Code
After you quantize your filter, you are ready to use the Filter Design HDL
Coder to configure and generate the filter’s Verilog code. This section guides
you through the process for starting the Filter Design HDL Coder GUI,
setting some options, and generating the Verilog code and a test bench for the
FIR filter you designed and quantized in “Designing the FIR Filter” on page
2-23 and “Quantizing the FIR Filter” on page 2-25.

1 Start the Filter Design HDL Coder by selecting Targets–>Generate HDL
in the FDATool dialog box. The FDATool displays the Generate HDL dialog
box.

2-28

Optimized FIR Filter Tutorial

2 Select Verilog for the Filter target language option, as shown in the
following dialog box.

2-29

2 Tutorials: Generating HDL Code for Filters

3 In the Name text box of the HDL filter pane, replace the default name
with optfir. This option names the Verilog module and the file that is
to contain the filter’s Verilog code.

4 In the Name text box of the Test bench types pane, replace the default
name with optfir_tb. This option names the generated test bench file.

5 In the HDL filter pane, select the Optimize for HDL option. This option
is for generating HDL code that is optimized for performance or space
requirements. When this option is enabled, the Filter Design HDL Coder
makes tradeoffs concerning data types and might ignore your quantization
settings to achieve optimizations. When you use the option, keep in mind
that you do so at the cost of potential numeric differences between filter
results produced by MATLAB and the simulated results for the optimized
HDL code.

6 Select CSD for the Coeff multipliers option. This option optimizes
coefficient multiplier operations by instructing the coder to replace them
with additions of partial products produced by a canonic signed digit (CSD)
technique. This technique minimizes the number of addition operations
required for constant multiplication by representing binary numbers with
a minimum count of nonzero digits. This option also has the potential for
producing numeric differences between MATLAB filter results and the
simulated results for the optimized HDL code.

7 Select the Add pipeline registers option. For FIR filters, this option
optimizes final summation. The coder creates a final adder that performs
pair-wise addition on successive products and includes a stage of pipeline
registers after each level of the tree. When used for FIR filters, this option
also has the potential for producing numeric differences between MATLAB
filter results and the simulated results for the optimized HDL code.

8 Click HDL Options. The Filter Design HDL Coder displays the HDL
Options dialog box.

2-30

Optimized FIR Filter Tutorial

9 In the Comment in header text box, type Tutorial - Optimized FIR
Filter and then click Apply. The Filter Design HDL Coder adds the
comment to the end of the header comment block in each generated file.

10 Select the Ports tab. The Ports pane appears.

11 Change the names of the input and output ports. Replace filter_in with
data_in and filter_out with data_out.

2-31

2 Tutorials: Generating HDL Code for Filters

12 Clear the check box for the Add input register option. The Ports pane
should now look like the following.

13 Click Apply and then OK to register your changes and close the HDL
Options dialog box.

2-32

Optimized FIR Filter Tutorial

14 Click Test Bench Options. The Filter Design HDL Coder displays the
Test Bench Options dialog box.

Use this dialog box to customize the generated test bench. Note that the
Error margin (bits) option is enabled. This option is enabled because
previously selected optimization options (such as Add pipeline registers)
can potentially produce numeric results that differ from the results of the
original MATLAB filter. You can use this option to adjust the number of
least significant bits the test bench will ignore during comparisons before
generating a warning.

15 For this tutorial, apply the default settings by clicking OK.

16 In the Generate HDL dialog box, click Generate to start the code
generation process. When code generation completes, click Close to close
the dialog box.

The Filter Design HDL Coder displays the following messages in the
MATLAB Command Window as it generates the filter and test bench
Verilog files:

Starting Verilog code generation process for filter: optfir

Generating optfir.v file in: hdlsrc

Starting generation of optfir Verilog module

2-33

2 Tutorials: Generating HDL Code for Filters

Starting generation of optfir Verilog module body

HDL latency is 6 samples

Successful completion of Verilog code generation process for filter: optfir

Starting generation of Verilog Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.

Generating Verilog file optfir_tb.v in: hdlsrc

Done generating Verilog test bench.

As the messages indicate, the Filter Design HDL Coder creates the
directory hdlsrc under your current working directory and places the files
optfir.v and optfir_tb.v in that directory.

The generated Verilog code has the following characteristics:

• Verilog module named optfir.

• Registers that use asynchronous resets when the reset signal is active
high (1).

• Generated code that optimizes its use of data types and eliminates
redundant operations.

• Coefficient multipliers optimized with the CSD technique.

• Final summations optimized using a pipelined technique.

• Ports that have the following names:

Verilog Port Name

Input data_in

Output data_out

Clock input clk

Clock enable input clk_enable

Reset input reset

• An extra register for handling filter output.

• Coefficients named coeffn, where n is the coefficient number, starting
with 1.

2-34

Optimized FIR Filter Tutorial

• Type safe representation is used when zeros are concatenated: '0'
& '0'...

• The postfix string _process is appended to sequential (begin) block
names.

The generated test bench:

• Is a portable Verilog file.

• Forces clock, clock enable, and reset input signals.

• Forces the clock enable input signal to active high.

• Drives the clock input signal high (1) for 5 nanoseconds and low (0) for
5 nanoseconds.

• Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.

• Applies a hold time of 2 nanoseconds to data input signals.

• Applies an error margin of 4 bits.

• Applies impulse, step, ramp, chirp, and white noise stimulus types.

Getting Familiar with the FIR Filter’s Optimized
Generated Verilog Code
Get familiar with the filter’s optimized generated Verilog code by opening and
browsing through the file optfir.v in an ASCII or HDL simulator editor:

1 Open the generated Verilog filter file optcfir.v.

2 Search for optfir. This line identifies the Verilog module, using the string
you specified for the Name option in the HDL filter pane. See step 3 in
“Configuring and Generating the FIR Filter’s Optimized Verilog Code”
on page 2-28.

3 Search for Tutorial. This is where the Filter Design HDL Coder places
the text you entered for the Comment in header option. See step 9 in
“Configuring and Generating the FIR Filter’s Optimized Verilog Code”
on page 2-28.

2-35

2 Tutorials: Generating HDL Code for Filters

4 Search for HDL Code. This section lists the Filter Design HDL Coder
options you modified in “Configuring and Generating the FIR Filter’s
Optimized Verilog Code” on page 2-28.

5 Search for Filter Settings. This section of the VHDL code describes the
filter design and quantization settings as you specified in “Designing the
FIR Filter” on page 2-23 and “Quantizing the FIR Filter” on page 2-25.

6 Search for module. This line names the Verilog module, using the string
you specified for the Name option in the HDL filter pane. This line also
declares the list of ports, as defined by options on the Ports pane of the
HDL Options dialog box. The ports for data input and output are named
with the strings you specified for the Input port and Output port options
on the Ports tab of the HDL Options dialog box. See steps 3 and 11 in
“Configuring and Generating the FIR Filter’s Optimized Verilog Code”
on page 2-28.

7 Search for input. This line and the four lines that follow, declare the
direction mode of each port.

8 Search for Constants. This is where the coefficients are defined. They are
named using the default naming scheme, coeffn, where n is the coefficient
number, starting with 1.

9 Search for Signals. This is where the filter’s signals are defined.

10 Search for sumvector1. This area of code declares the signals for
implementing an instance of a pipelined final adder. Signal declarations
for four additional pipelined final adders are also included. These signals
are used to implement the pipelined FIR adder style optimization specified
with the Add pipeline registers option. See step 7 in “Configuring and
Generating the FIR Filter’s Optimized Verilog Code” on page 2-28.

11 Search for process. The block name Delay_Pipeline_process includes
the default block postfix string _process.

12 Search for reset. This is where the reset signal is asserted. The default,
active high (1), was specified. Also note that the process applies the
default asynchronous reset style when generating code for registers.

2-36

Optimized FIR Filter Tutorial

13 Search for posedge. This Verilog code checks for rising edges when the
filter operates on registers.

14 Search for sumdelay_pipeline_process1. This block implements the
pipeline register stage of the pipeline FIR adder style you specified in
step 7 of “Configuring and Generating the FIR Filter’s Optimized Verilog
Code” on page 2-28.

15 Search for output_register. This is where filter output is written to an
output register. The Filter Design HDL Coder generates the code for this
register by default. In step 12 in “Configuring and Generating the FIR
Filter’s Optimized Verilog Code” on page 2-28 , you cleared the Add input
register option, but left the Add output register selected. Also note
that the process name Output_Register_process includes the default
process postfix string _process.

16 Search for data_out. This is where the filter writes its output data.

Verifying the FIR Filter’s Optimized Generated Verilog
Code
This section explains how to verify the FIR filter’s optimized generated
Verilog code with the generated Verilog test bench. Although this tutorial
uses ModelSim as the tool for compiling and simulating the Verilog code, you
can use any HDL simulation tool package.

To verify the filter code, complete the following steps:

2-37

2 Tutorials: Generating HDL Code for Filters

1 Start your simulator. When you start ModelSim, a screen display similar to
the following appears.

2 Set the current directory to the directory that contains your generated
Verilog files. For example:

cd hdlsrc

3 If necessary, create a design library to store the compiled Verilog modules.
In ModelSim, you can create a design library with the vlib command.

vlib work

4 Compile the generated filter and test bench Verilog files. In ModelSim, you
compile Verilog code with the vlog command. The following ModelSim
commands compile the filter and filter test bench Verilog code.

vlog optfir.v
vlog optfir_tb.v

2-38

Optimized FIR Filter Tutorial

The following screen display shows this command sequence and
informational messages displayed during compilation.

5 Load the test bench for simulation. The procedure for doing this varies
depending on the simulator you are using. In ModelSim, you load the test
bench for simulation with the vsim command. For example:

vsim optfir_tb

2-39

2 Tutorials: Generating HDL Code for Filters

The following ModelSim display shows the results of loading optfir_tb
with the vsim command.

2-40

Optimized FIR Filter Tutorial

6 Open a display window for monitoring the simulation as the test bench
runs. For example, in ModelSim, you can use the following command
to open a wave window to view the results of the simulation as HDL
waveforms:

add wave *

The following wave window displays:

7 To start running the simulation, issue the appropriate command for your
simulator. For example, in ModelSim, you can start a simulation with
the run command.

2-41

2 Tutorials: Generating HDL Code for Filters

The following ModelSim display shows the run -all command being used
to start a simulation.

As your test bench simulation runs, watch for error messages. If any error
messages appear, you must interpret them as they pertain to your filter
design and the HDL customizations you applied with the Filter Design
HDL Coder. You must determine whether the results are expected based on
the customizations you specified when generating the filter Verilog code.

2-42

Optimized FIR Filter Tutorial

The following wave window shows the simulation results as HDL
waveforms.

2-43

2 Tutorials: Generating HDL Code for Filters

IIR Filter Tutorial
This section guides you through the steps for designing a basic quantized
discrete-time IIR filter, generating VHDL code for the filter, and verifying
the VHDL code with a generated test bench. The procedure is presented in
the following topics:

• “Designing an IIR Filter” on page 2-44

• “Quantizing the IIR Filter” on page 2-46

• “Configuring and Generating the IIR Filter’s VHDL Code” on page 2-50

• “Getting Familiar with the IIR Filter’s Generated VHDL Code” on page 2-57

• “Verifying the IIR Filter’s Generated VHDL Code” on page 2-58

Designing an IIR Filter
One way of designing a filter in the MATLAB environment is to use the
FDATool. This section guides you through the procedure of designing and
creating a filter for an IIR filter. These instructions assume you are familiar
with the MATLAB user interface and the FDATool:

1 Start MATLAB.

2 Set your MATLAB current directory to the directory you created in
“Creating a Directory for Your Tutorial Files” on page 2-2.

2-44

IIR Filter Tutorial

3 Start the FDATool by entering the fdatool command in the MATLAB
Command Window. MATLAB displays the Filter Design & Analysis Tool
dialog box.

4 In the Filter Design & Analysis Tool dialog box, set the following filter
options:

2-45

2 Tutorials: Generating HDL Code for Filters

Option Value

Response Type Highpass

Design Method IIR Butterworth

Filter Order Specify order: 5

Frequency Specifications Units: Hz

Fs: 48000

Fc: 10800

5 Click Design Filter. The FDATool creates a filter for the specified design.
The following message appears in the FDATool status bar when the task
is complete.

Designing Filter... Done

For more information on designing filters with the FDATool, see the
FDATool and Filter Design Toolbox documentation.

Quantizing the IIR Filter
You should quantize filters for HDL code generation. To quantize your filter,

1 Open the IIR filter design you created in “Designing an IIR Filter” on page
2-44 if it is not already open.

2-46

IIR Filter Tutorial

2 Click the Set Quantization Parameters button in the left-side toolbar.
The FDATool displays the Filter arithmetic list in the bottom half of
its dialog box.

2-47

2 Tutorials: Generating HDL Code for Filters

3 Select Fixed-point from the list. The FDATool displays the first of three
tabbed panels of its dialog box.

You use the quantization options to test the effects of various settings with
a goal of optimizing the quantized filter’s performance and accuracy.

4 Select the Filter Internals tab and set Round towards to Floor and
Overflow Mode to Saturate.

2-48

IIR Filter Tutorial

5 Click Apply. The quantized filter appears as follows.

For more information on quantizing filters, see the FDATool and Filter Design
Toolbox documentation.

2-49

2 Tutorials: Generating HDL Code for Filters

Configuring and Generating the IIR Filter’s VHDL Code
After you quantize your filter, you are ready to use the Filter Design HDL
Coder to configure and generate the filter’s VHDL code. This section guides
you through the procedure for starting the Filter Design HDL Coder GUI,
setting some options, and generating the VHDL code and a test bench for the
IIR filter you designed and quantized in “Designing an IIR Filter” on page
2-44 and “Quantizing the IIR Filter” on page 2-46:

2-50

IIR Filter Tutorial

1 Start the Filter Design HDL Coder by selecting Targets > Generate HDL
in the FDATool dialog box. The FDATool displays the Generate HDL dialog
box.

2 In the Name text box of the HDL filter pane, type iir. This option names
the VHDL entity and the file that is to contain the filter’s VHDL code.

3 In the Name text box of the Test bench types pane, type iir_tb. This
option names the generated test bench file.

2-51

2 Tutorials: Generating HDL Code for Filters

4 Click HDL Options. The Filter Design HDL Coder displays the HDL
Options dialog box.

5 In the Comment in header text box, type Tutorial - IIR Filter and
then click Apply. The Filter Design HDL Coder adds the comment to the
end of the header comment block in each generated file.

6 Select the Ports tab. The Ports pane appears.

2-52

IIR Filter Tutorial

7 Clear the check box for the Add output register option. The Ports pane
should now look like the following.

8 Click Apply.

9 Select the Advanced tab. The Advanced pane appears.

2-53

2 Tutorials: Generating HDL Code for Filters

10 Select the Use ’rising_edge’ for registers option. The Advanced pane
should now look like the following.

11 Click Apply to register your changes and then OK to close the dialog box.

2-54

IIR Filter Tutorial

12 Click Test Bench Options. The Filter Design HDL Coder displays a Test
Bench Options dialog box.

You use this dialog box to customize the generated test bench.

13 For this tutorial, apply the default settings by clicking OK.

14 In the Generate HDL dialog box, click Generate to start the code
generation process. When code generation completes, click OK to close
the dialog box.

The Filter Design HDL Coder displays the following messages in the
MATLAB Command Window as it generates the filter and test bench
VHDL files:

Starting VHDL code generation process for filter: iir

Generating iir.vhd file in: hdlsrc

Starting generation of iir VHDL entity

Starting generation of iir VHDL architecture

Second-order section, # 1

Second-order section, # 2

First-order section, # 3

HDL latency is 1 samples

Successful completion of VHDL code generation process for filter: iir

2-55

2 Tutorials: Generating HDL Code for Filters

Starting generation of VHDL Test Bench

Generating input stimulus

Done generating input stimulus; length 2172 samples.

Generating VHDL file iir_tb.vhd in: hdlsrc

Done generating VHDL test bench.

As the messages indicate, the Filter Design HDL Coder creates the
directory hdlsrc under your current working directory and places the files
iir.vhd and iir_tb.vhd in that directory.

The generated VHDL code has the following characteristics:

• VHDL entity named iir.

• Registers that use asynchronous resets when the reset signal is active
high (1).

• Ports have the following default names:

VHDL Port Name

Input filter_in

Output filter_out

Clock input clk

Clock enable input clk_enable

Reset input reset

• An extra register for handling filter input.

• Clock input, clock enable input and reset ports are of type STD_LOGIC
and data input and output ports are of typeSTD_LOGIC_VECTOR.

• Coefficients are named coeffn, where n is the coefficient number,
starting with 1.

• Type safe representation is used when zeros are concatenated: '0'
& '0'...

• Registers are generated with the rising_edge function rather than the
statement ELSIF clk'event AND clk='1' THEN.

• The postfix string _process is appended to process names.

2-56

IIR Filter Tutorial

The generated test bench:

• Is a portable VHDL file.

• Forces clock, clock enable, and reset input signals.

• Forces the clock enable input signal to active high.

• Drives the clock input signal high (1) for 5 nanoseconds and low (0) for
5 nanoseconds.

• Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.

• Applies a hold time of 2 nanoseconds to data input signals.

• Applies step, ramp, and chirp stimulus types.

Getting Familiar with the IIR Filter’s Generated VHDL
Code
Get familiar with the filter’s generated VHDL code by opening and browsing
through the file iir.vhd in an ASCII or HDL simulator editor:

1 Open the generated VHDL filter file iir.vhd.

2 Search for iir. This line identifies the VHDL module, using the string
you specified for the Name option in the HDL filter pane. See step 2 in
“Configuring and Generating the IIR Filter’s VHDL Code” on page 2-50.

3 Search for Tutorial. This is where the Filter Design HDL Coder places
the text you entered for the Comment in header option. See step 5 in
“Configuring and Generating the IIR Filter’s VHDL Code” on page 2-50.

4 Search for HDL Code. This section lists the Filter Design HDL Coder
options you modified in“Configuring and Generating the IIR Filter’s VHDL
Code” on page 2-50.

5 Search for Filter Settings. This section of the VHDL code describes the
filter design and quantization settings as you specified in “Designing an
IIR Filter” on page 2-44 and “Quantizing the IIR Filter” on page 2-46.

6 Search for ENTITY. This line names the VHDL entity, using the string
you specified for the Name option in the HDL filter pane. See step 2 in
“Configuring and Generating the IIR Filter’s VHDL Code” on page 2-50.

2-57

2 Tutorials: Generating HDL Code for Filters

7 Search for PORT. This PORT declaration defines the filter’s clock, clock
enable, reset, and data input and output ports. The ports for clock, clock
enable, reset, and data input and output signals are named with default
strings.

8 Search for CONSTANT. This is where the coefficients are defined. They are
named using the default naming scheme, coeff_xm_sectionn, where x is a
or b, m is the coefficient number, and n is the section number.

9 Search for SIGNAL. This is where the filter’s signals are defined.

10 Search for input_reg_process. The PROCESS block name
input_reg_process includes the default PROCESS block postfix string
_process. This is where filter input is read from an input register. The
Filter Design HDL Coder generates the code for this register by default. In
step 7 in “Configuring and Generating the Basic FIR Filter’s VHDL Code”
on page 2-8 , you cleared the Add output register option, but left the
Add input register option selected.

11 Search for IF reset. This is where the reset signal is asserted. The default,
active high (1), was specified. Also note that the PROCESS block applies the
default asynchronous reset style when generating VHDL code for registers.

12 Search for ELSIF. This is where the VHDL code checks for rising edges when
the filter operates on registers. The rising_edge function is used as you
specified in the Advanced pane of the HDL Options dialog box. See step 10
in “Configuring and Generating the IIR Filter’s VHDL Code” on page 2-50.

13 Search for Section 1. This is where second-order section 1 data is filtered.
Similar sections of VHDL code apply to another second-order section and
a first-order section.

14 Search for filter_out. This is where the filter writes its output data.

Verifying the IIR Filter’s Generated VHDL Code
This sections explains how to verify the IIR filter’s generated VHDL code
with the generated VHDL test bench. Although this tutorial uses ModelSim
as the tool for compiling and simulating the VHDL code, you can use any
HDL simulation tool package.

To verify the filter code, complete the following steps:

2-58

IIR Filter Tutorial

1 Start your simulator. When you start ModelSim, a screen display similar to
the following appears.

2 Set the current directory to the directory that contains your generated
VHDL files. For example:

cd hdlsrc

3 If necessary, create a design library to store the compiled VHDL entities,
packages, architectures, and configurations. In ModelSim, you can create a
design library with the vlib command.

vlib work

4 Compile the generated filter and test bench VHDL files. In ModelSim, you
compile VHDL code with the vcom command. The following ModelSim
commands compile the filter and filter test bench VHDL code.

vcom iir.vhd
vcom iir_tb.vhd

2-59

2 Tutorials: Generating HDL Code for Filters

The following screen display shows this command sequence and
informational messages displayed during compilation.

5 Load the test bench for simulation. The procedure for doing this varies
depending on the simulator you are using. In ModelSim, you load the test
bench for simulation with the vsim command. For example:

vsim work.iir_tb

2-60

IIR Filter Tutorial

The following ModelSim display shows the results of loading work.iir_tb
with the vsim command:

6 Open a display window for monitoring the simulation as the test bench
runs. For example, in ModelSim, you can use the following command
to open a wave window to view the results of the simulation as HDL
waveforms.

add wave *

2-61

2 Tutorials: Generating HDL Code for Filters

The following wave window displays.

7 To start running the simulation, issue the appropriate command for your
simulator. For example, in ModelSim, you can start a simulation with
the run command.

2-62

IIR Filter Tutorial

The following ModelSim display shows the run -all command being used
to start a simulation.

As your test bench simulation runs, watch for error messages. If any error
messages appear, you must interpret them as they pertain to your filter
design and the HDL customizations you applied with the Filter Design
HDL Coder. You must determine whether the results are expected based on
the customizations you specified when generating the filter VHDL code.

Note

• The warning messages that note Time: 0 ns in the preceding display
are not errors and you can ignore them.

• The failure message that appears in the preceding display is not flagging
an error. If the message includes the string Test Complete, the test
bench has successfully run to completion. The Failure part of the
message is tied to the mechanism the Filter Design HDL Coder uses to
end the simulation.

2-63

2 Tutorials: Generating HDL Code for Filters

The following wave window shows the simulation results as HDL
waveforms.

2-64

3

Generating HDL Code for a
Filter Design

The Generate HDL dialog box is a graphical user interface (GUI) plug-in tool
accessible from the Filter Design and Analysis Tool (FDATool) packaged with
the Signal Processing and Filter Design Toolboxes. Using the GUI, you can
quickly and easily generate HDL code and a test bench for a quantized filter
you design with the FDATool. Although this chapter focuses on explaining
how to use the Generate HDL dialog box, a command line interface is also
available. For descriptions of available functions and the properties you
can specify in the command line, see Chapter 7, “Functions — Alphabetical
List” and Chapter 6, “Properties — Alphabetical List”. Topics covered in
this chapter include the following:

Overview of Generating HDL Code
for a Filter Design (p. 3-3)

Provides an overview of the steps
involved with using the Generate
HDL dialog box to generate HDL
code for a filter design

Opening the Generate HDL Dialog
Box (p. 3-5)

Explains how to open the Generate
HDL dialog box

What Is Generated by Default?
(p. 3-10)

Describes what the Filter Design
HDL Coder generates when you
specify no customizations

What Are Your HDL Requirements?
(p. 3-15)

Provides a checklist that helps you
determine whether you need to
specify generation customizations

Setting the Target Language (p. 3-21) Explains how to specify whether
VHDL or Verilog filter code is
generated

3 Generating HDL Code for a Filter Design

Setting the Names and Location for
Generated HDL Files (p. 3-22)

Explains how to explicitly name and
specify the location for generated
HDL filter and test bench files

Customizing Reset Specifications
(p. 3-29)

Explains how to customize the
names and location of generated files
and specifications for resets

Customizing the HDL Code (p. 3-32) Explains how to customize various
elements of generated HDL code

Setting Optimizations (p. 3-57) Explains how to optimize a filter’s
generated HDL code, even if the
resulting code might produce results
that differ from results of the original
MATLAB filter design

Generating Code for Multirate
Filters (p. 3-85)

Describes types of multirate filters
supported for HDL code generation,
and how to specify options for
multirate filter code generation

Generating Code for Cascade Filters
(p. 3-92)

Describes types of cascade filters
supported for HDL code generation,
and how to specify options for
cascade filter code generation

Customizing the Test Bench (p. 3-95) Explains how to specify a test bench
type, customize clock and reset
settings, and adjust the stimulus
response

Generating the HDL Code (p. 3-109) Explains how to initiate HDL code
generation discusses the data type
conversions that occur during the
generation process

Generating Scripts for EDA Tools
(p. 3-110)

Explains how to generate and
customize scripts for third-party
simulation and synthesis tools

3-2

Overview of Generating HDL Code for a Filter Design

Overview of Generating HDL Code for a Filter Design
Consider the following process as you prepare to use the Generate HDL dialog
box to generate VHDL code for your quantized filter:

1 Open the Generate HDL dialog box.

2 Review what the Filter Design HDL Coder generates by default.

3 Assess whether the default settings meet your application requirements. If
they do, skip to step 6.

4 Review the customization checklist available in “What Are Your HDL
Requirements?” on page 3-15 and identify required customizations.

5 Modify the Generate HDL dialog box options to address your application
requirements, as described in the sections beginning with “Setting the
Target Language” on page 3-21 .

6 Generate the filter’s HDL code and test bench.

3-3

3 Generating HDL Code for a Filter Design

The following figure shows the steps in a flow diagram.

"	#�	$
�	�����
������

��%		��

	&��
	�	����

���	

�	�

"	#�	$
�������������
��	�'����

%����
������
�	������

��	�
�	�	
��	
���
������

�	�	
��	
���
����	

���	
���
�	��
�	���

3-4

Opening the Generate HDL Dialog Box

Opening the Generate HDL Dialog Box
The Generate HDL dialog box lets you customize HDL properties and initiate
HDL code generation. The dialog box is accessible from the Filter Design
and Analysis Tool (FDATool). To open the initial Generate HDL dialog box,
do the following:

1 Enter the fdatool command at the MATLAB command prompt. The
FDATool displays its initial dialog box.

3-5

3 Generating HDL Code for a Filter Design

2 If the filter design is quantized, skip to step 3. Otherwise, quantize the

filter by clicking the Set Quantization Parameters button. The
Filter arithmetic menu appears in the bottom half of the dialog box.

3-6

Opening the Generate HDL Dialog Box

Note All supported filter structures support fixed-point, quantization
type, and floating-point (double) realizations.

3 If necessary, adjust the setting of the Filter arithmetic option. The
FDATool displays the first of three tabbed panels of its dialog.

3-7

3 Generating HDL Code for a Filter Design

4 Select Targets > Generate HDL. The FDATool displays the Generate
HDL dialog box.

If the coder does not support the structure of the current filter in the
FDATool, an error dialog appears. For example, if the current filter is a
quantized, lattice-coupled, allpass filter, the following message appears.

3-8

Opening the Generate HDL Dialog Box

3-9

3 Generating HDL Code for a Filter Design

What Is Generated by Default?
The Generate HDL dialog box provides many options for you to customize the
HDL code and test bench that the Filter Design HDL Coder generates. If you
choose not to specify customizations, the Filter Design HDL Coder applies the
default settings outlined in the following sections. Review these settings to
determine whether you need to apply customizations:

• “Default Settings for Generated Files” on page 3-10

• “Default Generation of Script Files” on page 3-11

• “Default Settings for Register Resets” on page 3-11

• “Default Settings for General HDL Code” on page 3-11

• “Default Settings for Code Optimizations” on page 3-13

• “Default Settings for Test Benches” on page 3-13

Default Settings for Generated Files
By default, the Filter Design HDL Coder

• Generates the following files, where Hd is the name of the quantized filter:

Language File Name

Verilog Filter source Hd.v

Filter test bench Hd_tb.v

VHDL Filter source Hd.vhd

Package (if needed) Hd_pkg.vhd

Test bench Hd_tb.vhd

• Places generated files in a subdirectory named hdlsrc, under your current
working directory.

• Includes VHDL entity and architecture code in a single source file.

For information on modifying these settings, see “What Are Your HDL
Requirements?” on page 3-15 and “Setting the Names and Location for
Generated HDL Files” on page 3-22.

3-10

What Is Generated by Default?

Default Generation of Script Files
Filter Design HDL Coder supports generation of script files for third-party
Electronic Design Automation (EDA) tools.

Using the defaults, you can automatically generate scripts for the following
tools:

• Mentor Graphics ModelSim® SE/PE HDL simulator

• The Synplify family of synthesis tools

See “Generating Scripts for EDA Tools” on page 3-110 for detailed information
on generation and customization of scripts.

Default Settings for Register Resets
By default, the Filter Design HDL Coder

• Uses an asynchronous reset when generating HDL code for registers.

• Uses an active-high (1) signal for register resets.

For information on modifying these settings, see “What Are Your HDL
Requirements?” on page 3-15 and “Customizing Reset Specifications” on page
3-29.

Default Settings for General HDL Code
By default, the Filter Design HDL Coder

• Names the generated VHDL entity or Verilog module with the name of
the quantized filter.

• Names a filter’s HDL ports as follows:

HDL Port Name

Input filter_in

Output filter_out

Clock input clk

3-11

3 Generating HDL Code for a Filter Design

HDL Port Name

Clock enable
input

clk_enable

Reset input reset

• Sets the data types for HDL ports as follows:

HDL Port VHDL Type Verilog Type

Clock input STD_LOGIC wire

Clock enable input STD_LOGIC wire

Reset STD_LOGIC wire

Data input STD_LOGIC_VECTOR wire

Data output STD_LOGIC_VECTOR wire

• Names coefficients as follows:

For... Names Coefficients...

FIR filters coeffn, where n is the coefficient number, starting with 1

IIR filters coeff_xm_sectionn, where x is a or b, m is the coefficient
number, and n is the section number

• When declaring signals of type REAL, initializes the signal with a value of
0.0.

• Places VHDL configurations in any file that instantiates a component.

• In VHDL, uses a type safe representation when concatenating zeros: '0'
& '0'...

• In VHDL, applies the statement ELSIF clk'event AND clk='1' THEN to
check for clock events.

• In Verilog, uses time scale directives.

• Allows a minimum of 3 bits of filter input and coefficient scale values to
overlap before a warning is issued.

• Adds an extra input register and an extra output register to the filter code.

3-12

What Is Generated by Default?

• Appends _process to process names.

• When creating labels for VHDL GENERATE statements:

- Appends _gen to VHDL section and block names.

- Names VHDL output assignment blocks with the string outputgen.

For information on modifying these settings, see “What Are Your HDL
Requirements?” on page 3-15 and “Customizing the HDL Code” on page 3-32.

Default Settings for Code Optimizations
By default, the Filter Design HDL Coder disables most optimizations. The
coder

• Generates HDL code that is bit-true to the original MATLAB filter function
and is not optimized for performance or space requirements.

• Applies a linear final summation to FIR filters. This is the form of
summation explained in most DSP text books.

• For FIR filters, generates a fully parallel architecture (optimal for speed).

• Enables multiplier operations for a filter, as opposed to replacing them
with additions of partial products.

For information on modifying these settings, see “What Are Your HDL
Requirements?” on page 3-15 and “Setting Optimizations” on page 3-57.

Default Settings for Test Benches
By default, the Filter Design HDL Coder generates a VHDL test bench that
inherits all the HDL settings that are applied to the filter’s HDL code. In
addition, the coder generates a test bench that

• Is named filter_tb.vhd.

• Forces clock, clock enable, and reset input signals.

• Forces clock enable and reset input signals to active high.

• Drives the clock input signal high (1) for 5 nanoseconds and low (0) for
5 nanoseconds.

3-13

3 Generating HDL Code for a Filter Design

• Forces reset signals for two cycles plus the hold time.

• Applies a hold time of 2 nanoseconds to filter reset and data input signals.

• Applies the following stimulus response types:

For Filters... Applies Response Types...

FIR, FIRT, symmetric FIR, and
antisymmetric FIR

Impulse, step, ramp, chirp, and white
noise

All others Step, ramp, and chirp

For information on modifying these settings, see “What Are Your HDL
Requirements?” on page 3-15 and “Customizing the Test Bench” on page 3-95.

3-14

What Are Your HDL Requirements?

What Are Your HDL Requirements?
As part of the process of generating HDL code for a filter designed in the
MATLAB environment, review the following checklist. The checklist will help
you determine whether you need to adjust any of the HDL property settings.
If your answer to any of the questions in the checklist is “yes,” go to the topic
listed in the second column of the table for information on how to adjust the
property setting to meet your project’s HDL requirements.

HDL Requirements Checklist

Requirement For More Information, See...

Language Selection

Do you need to adjust the target language setting? “Setting the Target Language” on
page 3-21

File Naming and Location Specifications

Do you want to specify a unique name, which does not
match the name of the quantized filter, for the VHDL
entity or Verilog module that represents the filter?

“Setting the Names and Location
for Generated HDL Files” on page
3-22

Do you want the file type extension for generated
HDL files to be a string other than .vhd for VHDL or
.v for Verilog?

“Setting the Names and Location
for Generated HDL Files” on page
3-22

Reset Specifications

Do you want to use synchronous resets? “Setting the Reset Style for
Registers” on page 3-29

Do you need the asserted level of the reset signal
to be low (0)?

“Setting the Asserted Level for
the Reset Input Signal” on page
3-30

Header Comment and General Naming Specifications

Do you want to add a specific string, such as a revision
control string, to the end of the header comment
block in each generated file?

“Specifying a Header Comment”
on page 3-33

Do you want a string other than coeff to be used as
the base filter coefficient name?

“Specifying a Prefix for Filter
Coefficients” on page 3-35

3-15

3 Generating HDL Code for a Filter Design

HDL Requirements Checklist (Continued)

Requirement For More Information, See...

If your filter design requires a VHDL package file,
do you want the name of the generated file to include
a string other than _pkg?

“Setting the Postfix String for
VHDL Package Files” on page
3-25

Do you want a string other than _entity to be
appended to VHDL entity or Verilog module names
if duplicate names are detected?

“Setting the Postfix String for
Resolving Entity or Module Name
Conflicts” on page 3-36

Do you want a string other than _rsvd to be appended
to specified names and labels that are HDL reserved
words?

“Setting the Postfix String for
Resolving HDL Reserved Word
Conflicts” on page 3-37

Do you want a string other than _process to be
appended to HDL process names?

“Setting the Postfix String for
Process Block Labels” on page
3-40

Do you want the Filter Design HDL Coder to write
the entity and architecture parts of generated
VHDL code to separate files?

“Splitting Entity and Architecture
Code into Separate Files” on page
3-26

If the Filter Design HDL Coder writes the entity and
architecture parts of VHDL code to separate files,
do you want strings other than _entity and _arch
included in the filenames?

“Splitting Entity and Architecture
Code into Separate Files” on page
3-26

Port Specifications

Do you want the Filter Design HDL Coder to use
strings other than filter_in and filter_out to
name HDL ports for the filter’s data input and
output signals?

“Naming HDL Ports” on page 3-42

Do you need the Filter Design HDL Coder to declare
the filter’s data input and output ports with a
VHDL type other than STD_LOGIC_VECTOR?

“Specifying the HDL Data Type
for Data Ports” on page 3-43

Do you want the Filter Design HDL Coder to use
strings other than clk and clk_enable to name HDL
ports for the filter’s clock and clock enable input
signals?

“Naming HDL Ports” on page 3-42

3-16

What Are Your HDL Requirements?

HDL Requirements Checklist (Continued)

Requirement For More Information, See...

Do you want the Filter Design HDL Coder to use a
string other than reset to name an HDL port for the
filter’s reset input signals?

“Naming HDL Ports” on page 3-42

Do you want the Filter Design HDL Coder to add
an extra input or output register to support the
filter’s HDL input and output ports?

“Suppressing Extra Input and
Output Registers” on page 3-45

Advanced Coding Specifications

Do you expect the filter’s coefficient scale values
to be more than 3 bits smaller than the size of the
filter’s input?

“ Minimizing Quantization Noise
for Fixed-Point Filters” on page
3-46

Do you want the Filter Design HDL Coder to
represent all constants as aggregates?

“Representing Constants with
Aggregates” on page 3-48

Are you using an EDA tool that does not support
loops? Do you need the Filter Design HDL Coder to
unroll and remove VHDL FOR and GENERATE loops?

“Unrolling and Removing VHDL
Loops” on page 3-49

Do you want the Filter Design HDL Coder to use
the VHDL rising_edge function to check for rising
edges when the filter is operating on registers?

“Using the VHDL rising_edge
Function” on page 3-50

Do you want to suppress Verilog time scale
directives?

“Suppressing Verilog Time Scale
Directives” on page 3-54

Do you want the Filter Design HDL Coder to omit
configurations from generated VHDL code? Are
you going to create and store the filter’s VHDL
configurations in separate VHDL source files?

“Suppressing the Generation of
VHDL Inline Configurations” on
page 3-52

Do you want the Filter Design HDL Coder to
use the VHDL syntax "000000..." to represent
concatenated zeros instead of the type safe
representation '0' & '0'?

“Specifying VHDL Syntax for
Concatenated Zeros” on page 3-53

3-17

3 Generating HDL Code for a Filter Design

HDL Requirements Checklist (Continued)

Requirement For More Information, See...

Do you want the Filter Design HDL Coder to apply
typical DSP processor treatment of input data types
when generating code for addition and subtraction
operations?

“Specifying Input Type Treatment
for Addition and Subtraction
Operations” on page 3-55

Optimization Specifications

Do you need numeric results optimized, even if
the results are not bit-true to the MATLAB filter
function?

“Optimizing Generated Code for
HDL” on page 3-58

Do you want the Filter Design HDL Coder to replace
multiplier operations by applying canonic signed
digit (CSD) and factored CSD techniques?

“Optimizing Coefficient
Multipliers” on page 3-59

Do you need the Filter Design HDL Coder to optimize
the final summation for FIR filters?

“Optimizing Final Summation for
FIR Filters” on page 3-60

Do you need to specify an optimal FIR filter
architecture with respect to speed or chip area?

“Speed vs. Area Optimizations for
FIR Filters” on page 3-61

Do you need to use a Distributed arithmetic
architecture for a fixed-point FIR filter?

“Distributed Arithmetic for FIR
Filters” on page 3-71

Do you want to optimize your filter’s clock rate? “Optimizing the Clock Rate with
Pipeline Registers” on page 3-81

Multirate and Cascade Filter Specifications

Do you need to generate code for a multirate filter ? “Generating Code for Multirate
Filters” on page 3-85

Do you need to generate code for a cascade of filter
objects?

“Generating Code for Cascade
Filters” on page 3-92

Test Bench Specifications

Do you want the name of the generated test bench
file to include a string other than _tb?

“Setting the Names and Location
for Generated HDL Files” on page
3-22

Do you want to generate a VHDL test bench? “Specifying a Test Bench Type” on
page 3-97

3-18

What Are Your HDL Requirements?

HDL Requirements Checklist (Continued)

Requirement For More Information, See...

Do you want to generate a Verilog file test bench? “Specifying a Test Bench Type” on
page 3-97

Do you want to generate a ModelSim .do file test
bench?

“Specifying a Test Bench Type” on
page 3-97

If the test bench type is a ModelSim .do file, does your
application require you to specify any simulation
flags?

“Specifying a Test Bench Type” on
page 3-97

Are you using a user-defined external source to force
clock enable input signals to a constant value?

“Configuring the Clock” on page
3-99

If the test bench is to force clock enable input signals,
do you want it to force the signals to active low (0)?

“Configuring the Clock” on page
3-99

Are you using a user-defined external source to force
clock input signals?

“Configuring the Clock” on page
3-99

If the test bench is to force clock input signals, do
you want the signals to be driven high or low for a
duration other than 5 nanoseconds?

“Configuring the Clock” on page
3-99

Are you using a user-defined external source to force
reset input signals?

“Configuring Resets” on page
3-101

If the test bench is to force reset input signals, do you
want it to force the signals to active low (0)?

“Configuring Resets” on page
3-101

If the test bench is to force reset input signals, do you
want it to apply a hold time other than two cycles
plus a hold time of 2 nanoseconds?

“Configuring Resets” on page
3-101

Do you want to apply a hold time other than 2
nanoseconds to filter data input signals?

“Setting a Hold Time for Data
Input Signals” on page 3-103

Do you want to customize the stimulus
to be applied by the test bench?

“Setting Test Bench Stimuli” on
page 3-106

3-19

3 Generating HDL Code for a Filter Design

HDL Requirements Checklist (Continued)

Requirement For More Information, See...

Script Generation Specifications

Do you want to customize script code that is
auto-generated for third-party EDA tools?

“Generating Scripts for EDA
Tools” on page 3-110

Do you want to customize script file names for
auto-generated EDA tool scripts??

“Generating Scripts for EDA
Tools” on page 3-110

3-20

Setting the Target Language

Setting the Target Language
By default, the Filter Design HDL Coder generates VHDL code for a filter.
If you retain the VHDL setting, Generate HDL dialog box options that are
specific to Verilog are grayed out and are not selectable.

If you require or prefer to generate Verilog code, select Verilog for the Filter
target language option in the HDL filter pane of the Generate HDL dialog
box. This setting causes the coder to enable options that are specific to Verilog
and to gray out and disable options that are specific to VHDL.

Command Line Alternative: Use the generatehdl function with the
TargetLanguage property to set the language to VHDL or Verilog.

3-21

3 Generating HDL Code for a Filter Design

Setting the Names and Location for Generated HDL Files
By default, the Filter Design HDL Coder creates the HDL files listed in the
following table and places them in subdirectory hdlsrc under your current
working directory. The Filter Design HDL Coder derives HDL filenames from
the name of the filter for which the HDL code is being generated and the file
type extension .vhd or .v for VHDL and Verilog, respectively. The table lists
example filenames based on filter name Hq.

Language Generated File Filename Example

Verilog Source file for the
quantized filter

dfilt_name.v Hq.v

Source file for the
filter’s test bench

dfilt_name_tb.v Hq_tb.v

VHDL Source file for the
quantized filter

dfilt_name.vhd Hq.vhd

Source file for the
filter’s test bench

dfilt_name_tb.vhd Hq_tb.vhd

Package file, if
required by the
filter design

dfilt_name_pkg.vhd Hq_pkg.vhd

The Filter Design HDL Coder also uses the filter name to name the VHDL
entity or Verilog module that represents the quantized filter in the HDL code.
Assuming a filter name of Hd, the name of the filter entity or module in the
HDL code is Hd.

By default, the Filter Design HDL Coder includes the code for a filter’s VHDL
entity and architectures in the same VHDL source file. Alternatively, you can
specify that the Filter Design HDL Coder write the generated code for the
entity and architectures to separate files. For example, if the filter name is
Hd, the Filter Design HDL Coder writes the VHDL code for the filter to files
Hd_entity.vhd and Hd_arch.vhd.

The following sections explain how to adjust the preceding default settings:

• “Setting Filter Entity and General File Naming Strings” on page 3-23

3-22

Setting the Names and Location for Generated HDL Files

• “Redirecting Filter Design HDL Coder Output” on page 3-24

• “Setting the Postfix String for VHDL Package Files” on page 3-25

• “Splitting Entity and Architecture Code into Separate Files” on page 3-26

Setting Filter Entity and General File Naming Strings
To set the string that the Filter Design HDL Coder uses to name the filter
entity or module and generated files, specify a new value in the Name field
of the HDL filter pane of the Generate HDL dialog box. The Filter Design
HDL Coder uses the Name string to

• Label the VHDL entity or Verilog module for your filter

• Name the file containing the HDL code for your filter

• Derive names for the filter’s test bench and package files

By default, the filter HDL files are generated with a .vhd or .v file extension,
depending on the language selection. To change the file extension,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box.

2 Select the General tab on the HDL Options dialog box.

3 Type the new file extension in the Verilog file extension or VHDL file
extension field.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Based on the following settings, the coder generates the filter file MyFIR.vhdl.

3-23

3 Generating HDL Code for a Filter Design

Note When specifying strings for filenames and file type extensions, consider
platform-specific requirements and restrictions. Also consider postfix strings
the Filter Design HDL Coder appends to the Name string, such as _tb
and_pkg.

Command Line Alternative: Use the generatehdl and generatetb
functions with the Name property to set the name of your filter entity and
the base string for generated HDL filenames. Specify the functions with the
VerilogFileExtension or VHDLFileExtension property to specify a file type
extension for generated HDL files.

Redirecting Filter Design HDL Coder Output
By default, the Filter Design HDL Coder places all generated HDL files in
the subdirectory hdlsrc under your current working directory. To direct
Filter Design HDL Coder output to a directory other than the default target
directory, you can use either the Target directory field or the Browse
button in the HDL filter pane of the Generate HDL dialog box.

Clicking on the Browse button opens a browser window that lets you select
(or create) the directory to which generated code will be written. When the
directory is selected, the full path and directory name are automatically
entered into the Target directory field.

Alternatively, you can enter the directory specification directly into the
Target directory field. If you specify a directory that does not exist, the
Filter Design HDL Coder creates the directory for you before depositing the
generated files. Your directory specification can be one of the following:

3-24

Setting the Names and Location for Generated HDL Files

• Directory name. In this case, the Filter Design HDL Coder looks for, and if
necessary, creates a subdirectory under your current working directory.

• An absolute path to a directory under your current working directory. If
necessary, the Filter Design HDL Coder creates the specified directory.

• A relative path to a higher level directory under your current working
directory. For example, if you specify ../../../myfiltvhd, the Filter
Design HDL Coder checks whether a directory named myfiltvhd exists
three levels up from your current working directory, creates the directory if
it does not exist, and writes all generated HDL files to that directory.

The following dialog sets the directory to MyFIRBetaVHDL.

This setting instructs the Filter Design HDL Coder to create the subdirectory
MyFIRBetaVHDL under the current working directory and write generated
HDL files to that directory.

Command Line Alternative: Use the generatehdl and generatetb
functions with theTargetDirectory property to redirect Filter Design HDL
Coder output.

Setting the Postfix String for VHDL Package Files
By default, the Filter Design HDL Coder appends the postfix _pkg to the base
filename when generating a VHDL package file. To rename the postfix string
for package files, do the following:

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the General tab.

3-25

3 Generating HDL Code for a Filter Design

3 Specify a new value in the Package postfix field.

Note When specifying a string for use as a postfix in filenames, consider
the size of the base name and platform-specific file naming requirements
and restrictions.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the PackagePostfix property to rename the filename postfix
for VHDL package files.

Splitting Entity and Architecture Code into Separate
Files
By default, the Filter Design HDL Coder includes a filter’s VHDL entity and
architecture code in the same generated VHDL file. Alternatively, you can
instruct the Filter Design HDL Coder to place the entity and architecture
code in separate files. For example, instead of all generated code residing in

3-26

Setting the Names and Location for Generated HDL Files

MyFIR.vhd, you can specify that the code reside in MyFIR_entity.vhd and
MyFIR_arch.vhd.

The Filter Design HDL Coder derives the names of the entity and architecture
files from

• The base filename, as specified by the Name field in the HDL filter pane
of the Generate HDL dialog box

• Default postfix string values _entity and _arch

• The VHDL file type extension, as specified by the VHDL file extension
field on the General pane of the HDL Options dialog box

To split the filter source file, do the following:

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the General tab.

3 Select Split entity and architecture. The Filter Design HDL Coder
enables the Split entity file postfix and Split arch. file postfix fields.

3-27

3 Generating HDL Code for a Filter Design

4 Specify new strings in the postfix fields if you want the Filter Design HDL
Coder to use postfix string values other than _entity and _arch to identify
the generated VHDL files.

Note When specifying a string for use as a postfix value in filenames,
consider the size of the base name and platform-specific file naming
requirements and restrictions.

5 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property SplitEntityArch to split the filter’s VHDL
code into separate files. Use properties SplitEntityFilePostfix and
SplitArchFilePostfix to rename the filename postfix for VHDL entity and
architecture code components.

3-28

Customizing Reset Specifications

Customizing Reset Specifications
Reset options appear in the lower portion of the HDL filter pane of the
Generate HDL dialog box, as shown in the following figure.

Use the reset options for

• “Setting the Reset Style for Registers” on page 3-29

• “Setting the Asserted Level for the Reset Input Signal” on page 3-30

Setting the Reset Style for Registers
By default, the Filter Design HDL Coder uses an asynchronous reset style
when generating HDL code for registers. Whether you should set the style to
asynchronous or synchronous depends on the type of device you are designing
(for example, FPGA or ASIC) and preference.

The following code fragment illustrates the use of asynchronous resets. Note
that the process block does not check for an active clock before performing
a reset.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));

ELSIF clk'event AND clk = '1' THEN
IF clk_enable = '1' THEN

delay_pipeline(0) <= signed(filter_in)
delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

END IF;
END IF;

END PROCESS delay_pipeline_process;

3-29

3 Generating HDL Code for a Filter Design

To change the reset style to synchronous, select Synchronous from the Reset
type menu in the HDL filter pane of the Generate HDL dialog box.

Code for a synchronous reset follows. This process block checks for a clock
event, the rising edge, before performing a reset.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

IF rising_edge(clk) THEN
IF reset = '1' THEN

delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));
ELSIF clk_enable = '1' THEN

delay_pipeline(0) <= signed(filter_in)
delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

END IF;
END IF;

END PROCESS delay_pipeline_process;

Command Line Alternative: Use the generatehdl and generatetb
functions with the property ResetType to set the reset style for your filter’s
registers.

Setting the Asserted Level for the Reset Input Signal
The asserted level for the reset input signal determines whether that signal
must be driven to active high (1) or active low (0) for registers to be reset in
the filter design. By default, the Filter Design HDL Coder sets the asserted
level to active high. For example, the following code fragment checks whether
reset is active high before populating the delay_pipeline register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

3-30

Customizing Reset Specifications

.

.

To change the setting to active low, select Active-low from the Reset
asserted level menu in the HDL filter pane of the Generate HDL dialog box.

With this change, the IF statement in the preceding generated code changes to

IF reset = '0' THEN

Note The Reset asserted level setting also determines the rest level for
test bench reset input signals.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property ResetAssertedLevel to set the asserted level for
the filter’s reset input signal.

3-31

3 Generating HDL Code for a Filter Design

Customizing the HDL Code
You select most HDL code customizations from options on the HDL Options
dialog box. Options that are specific to VHDL or Verilog are active only if that
language is selected. Inactive options appear gray and are not selectable.
An option may also appear inactive if it is dependent on the selection of
another option.

Options provided by the HDL Options dialog box are categorized into three
tabs: General, Ports, and Advanced.

The following dialog shows general options that are active for VHDL.

Note that the Verilog file extension option is inactive due to the VHDL
language selection. The Split entity file postfix and Split arch. file
postfix options are inactive due to a dependency on the setting of Split
entity and architecture.

The following sections explain how to use this dialog box to specify naming,
port, and advanced coding customizations:

• “Specifying a Header Comment” on page 3-33

• “Specifying a Prefix for Filter Coefficients” on page 3-35

3-32

Customizing the HDL Code

• “Setting the Postfix String for Resolving Entity or Module Name Conflicts”
on page 3-36

• “Setting the Postfix String for Resolving HDL Reserved Word Conflicts”
on page 3-37

• “Setting the Postfix String for Process Block Labels” on page 3-40

• “Naming HDL Ports” on page 3-42

• “Specifying the HDL Data Type for Data Ports” on page 3-43

• “Suppressing Extra Input and Output Registers” on page 3-45

• “ Minimizing Quantization Noise for Fixed-Point Filters” on page 3-46

• “Representing Constants with Aggregates” on page 3-48

• “Unrolling and Removing VHDL Loops” on page 3-49

• “Using the VHDL rising_edge Function” on page 3-50

• “Suppressing the Generation of VHDL Inline Configurations” on page 3-52

• “Specifying VHDL Syntax for Concatenated Zeros” on page 3-53

• “Suppressing Verilog Time Scale Directives” on page 3-54

• “Specifying Input Type Treatment for Addition and Subtraction
Operations” on page 3-55

Specifying a Header Comment
The Filter Design HDL Coder includes a header comment block, such as the
following, at the top of the files it generates:

--

-- Module:Hd

--

-- Generated by MATLAB(R) 7.0 and the Filter Design HDL Coder 1.0.

--

-- Generated on: 2004-02-04 09:42:43

--

3-33

3 Generating HDL Code for a Filter Design

You can use the Comment in header option to add a comment string, such
as a revision control string, to the end of the header comment block in each
generated file. For example, you might use this option to add the revision
control tag $Revision: 1.1.4.92 $. With this change, the preceding
header comment block would appear as follows:

--

-- Module:Hd

--

-- Generated by MATLAB(R) 7.0 and the Filter Designer HDL Coder 1.0.

--

-- Generated on: 2004-02-04 09:42:43

--

-- $Revision: 1.1.4.92 $

To add a header comment,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the General tab. General HDL coding options appear.

3 Type the comment string in the Comment in header field, as shown in
the following display.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property UserComment to add a comment string to the end
of the header comment block in each generated HDL file.

3-34

Customizing the HDL Code

Specifying a Prefix for Filter Coefficients
The Filter Design HDL Coder declares a filter’s coefficients as constants
within an rtl architecture. The coder derives the constant names adding the
prefix coeff to the following:

For... The Prefix Is Concatenated with...

FIR filters Each coefficient number, starting with 1.

Examples: coeff1, coeff22

IIR filters An underscore (_) and an a or b coefficient name (for example,
_a2, _b1, or _b2) followed by the string _sectionn, where n
is the section number.

Example: coeff_b1_section3 (first numerator coefficient of
the third section)

For example:

ARCHITECTURE rtl OF Hd IS

-- Type Definitions

TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF signed(15 DOWNTO 0); -- sfix16_En15

CONSTANT coeff1 : signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_En15

CONSTANT coeff2 : signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15

CONSTANT coeff3 : signed(15 DOWNTO 0) := to_signed(-81, 16); -- sfix16_En15

CONSTANT coeff4 : signed(15 DOWNTO 0) := to_signed(120, 16); -- sfix16_En15

To use a prefix other than coeff,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the General tab.

3-35

3 Generating HDL Code for a Filter Design

3 Enter a new string in the Coefficient prefix field, as shown in the
following display.

The string that you specify

• Must start with a letter

• Cannot end with an underscore (_)

• Cannot include a double underscore (__)

Note If you specify a VHDL or Verilog reserved word, the Filter Design
HDL Coder appends a reserved word postfix to the string to form a valid
identifier. If you specify a prefix that ends with an underscore, the coder
replaces the underscore character with under. For example, if you specify
coef_, the coder generates coefficient names such as coefunder1.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property CoeffPrefix to change the base name for filter
coefficients.

Setting the Postfix String for Resolving Entity or
Module Name Conflicts
The Filter Design HDL Coder checks whether multiple entities in VHDL or
multiple modules in Verilog share the same name. If a name conflict exists,

3-36

Customizing the HDL Code

the Filter Design HDL Coder appends the postfix _entity to the second of the
two matching strings.

To change the postfix string that the Filter Design HDL Coder applies,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the General tab.

3 Enter a new string in the Entity conflict postfix field, as shown in the
following display.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property EntityConflictPostfix to change the entity or
module conflict postfix string.

Setting the Postfix String for Resolving HDL Reserved
Word Conflicts
The Filter Design HDL Coder checks whether any strings that you specify as
names, postfix values, or labels are VHDL or Verilog reserved words. See the
tables below for listings of all VHDL and Verilog reserved words.

If you specify a reserved word, the Filter Design HDL Coder appends the
postfix _rsvd to the string. For example, if you try to name your filter mod,

3-37

3 Generating HDL Code for a Filter Design

for VHDL code, the Filter Design HDL Coder adds the postfix _rsvd to form
the name mod_rsvd.

To change the postfix string that the Filter Design HDL Coder applies,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the General tab.

3 Enter a new string in the Reserved word postfix field, as shown in the
following display.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property ReservedWordPostfix to change the reserved
word postfix string.

VHDL Reserved Words

abs access after alias all

and architecture array assert attribute

begin block body buffer bus

case component configuration constant disconnect

3-38

Customizing the HDL Code

VHDL Reserved Words (Continued)

downto else elsif end entity

exit file for function generate

generic group guarded if impure

in inertial inout is label

library linkage literal loop map

mod nand new next nor

not null of on open

or others out package port

postponed procedure process pure range

record register reject rem report

return rol ror select severity

signal shared sla sll sra

srl subtype then to transport

type unaffected units until use

variable wait when while with

xnor xor

Verilog Reserved Words

always and assign automatic begin

buf bufif0 bufif1 case casex

casez cell cmos config deassign

default defparam design disable edge

else end endcase endconfig endfunction

endgenerate endmodule endprimitive endspecify endtable

endtask event for force forever

fork function generate genvar highz0

3-39

3 Generating HDL Code for a Filter Design

Verilog Reserved Words (Continued)

highz1 if ifnone incdir include

initial inout input instance integer

join large liblist library localparam

macromodule medium module nand negedge

nmos nor noshowcancelled not notif0

notif1 or output parameter pmos

posedge primitive pull0 pull1 pulldown

pullup pulsestyle_onevent pulsestyle_ondetect rcmos real

realtime reg release repeat rnmos

rpmos rtran rtranif0 rtranif1 scalared

showcancelled signed small specify specparam

strong0 strong1 supply0 supply1 table

task time tran tranif0 tranif1

tri tri0 tri1 triand trior

trireg unsigned use vectored wait

wand weak0 weak1 while wire

wor xnor xor

Setting the Postfix String for Process Block Labels
The Filter Design HDL Coder uses process blocks to modify the content of a
filter’s registers. The label for each of these blocks is derived from a register
name and the postfix _process. For example, the coder derives the label
delay_pipeline_process in the following block from the register name
delay_pipeline and the postfix string _process.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));

ELSIF clk'event AND clk = '1' THEN

3-40

Customizing the HDL Code

IF clk_enable = '1' THEN
delay_pipeline(0) <= signed(filter_in)
delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

END IF;
END IF;

END PROCESS delay_pipeline_process;

You have the option of setting the postfix string to a value other than
_process. For example, you might change it to _clkproc. To change the
string,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the General tab.

3 Enter a new string in the Clocked process postfix field, as shown in
the following display.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property ClockProcessPostfix to change the postfix
string appended to process labels.

3-41

3 Generating HDL Code for a Filter Design

Naming HDL Ports
By default, the Filter Design HDL Coder names a filter’s HDL ports as follows:

HDL Port Default Port Name

Input port filter_in

Output port filter_out

Clock port clk

Clock enable port clk_enable

Reset port reset

For example, the default VHDL declaration for entity Hd looks like the
following.

ENTITYHd IS

PORT(clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

filter_in : IN std_logic_vector (15 DOWNTO 0); -- sfix16_En15

filter_out : OUT std_logic_vector (15 DOWNTO 0); -- sfix16_En15

);

ENDHd;

To change any of the port names,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

3-42

Customizing the HDL Code

2 Select the Ports tab. Port options appear, as shown in the following display.

3 Enter new strings in the following fields, as necessary:

• Input port

• Output port

• Clock port

• Clock enable port

• Reset input port

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the properties InputPort, OutputPort, ClockInputPort,
ClockEnableInputPort, and ResetInputPort to change the names of a
filter’s VHDL ports.

Specifying the HDL Data Type for Data Ports
By default, the Filter Design HDL Coder declares a filter’s input and output
data ports to be of type std_logic_vector in VHDL and type wire in
Verilog. If you are generating VHDL code, alternatively, you can specify

3-43

3 Generating HDL Code for a Filter Design

signed/unsigned, and for output data ports, Same as input data type.
The Filter Design HDL Coder applies type SIGNED or UNSIGNED based on the
data type specified in the filter design.

To change the VHDL data type setting for the input and output data ports,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the Ports tab. Port options appear.

3 Select a data type from the Input data type or Output data type menu
identified in the following display. The type for Verilog ports is always wire.

Note The setting of Input data type does not affect double-precision
input, which is always generated as type REAL for VHDL and wire[63:0]
for Verilog.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the properties InputType and OutputType to change the VHDL
data type for a filter’s input and output ports.

3-44

Customizing the HDL Code

Suppressing Extra Input and Output Registers
The Filter Design HDL Coder adds an extra input register (input_register)
and an extra output register (output_register) during HDL code generation.
These extra registers can be useful for timing purposes, but they add to the
filter’s overall latency. The following process block writes to extra output
register output_register when a clock event occurs and clk is active high (1):

Output_Register_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
output_register <= (OTHERS => '0');

ELSIF clk'event AND clk = '1' THEN
IF clk_enable = '1' THEN

output_register <= output_typeconvert;
END IF;

END IF;
END PROCESS Output_Register_Process;

If overall latency is a concern for your application and you have no timing
requirements, you can suppress generation of the extra registers as follows:

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the Ports tab. Port options appear.

3-45

3 Generating HDL Code for a Filter Design

3 Clear Add input register and Add output register per your
requirements. The following display shows the setting for suppressing the
generation of an extra input register.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the properties AddInputRegister and AddOutputRegister to
add an extra input or output register.

Minimizing Quantization Noise for Fixed-Point Filters
For fixed-point filters, an option is available for controlling whether the coder
generates a warning for scale values that are below a specified numeric
threshold relative to the input data format. These warnings help identify
scale values that cause the input range to be quantized to near zero, adding
quantization noise.

You can control the warnings by specifying an overlap threshold. The coder
temporarily converts a scale value to the data type of the filter input. Then,
the coder checks whether the number of leading zeros in the converted value
is greater than or equal to the specified overlap threshold. If this condition
exists, the coder generates a warning.

3-46

Customizing the HDL Code

You can prevent the coder from generating these warnings by setting the
minimum overlap to the number of bits in the input format. However, if the
converted scale value equals zero, the coder reports an error because the
input range is quantized away.

Consider the following examples. The second and third examples generate
warnings because the number of leading zeros in the binary representation of
the converted scale value is equal to or greater than the specified minimum
scale value overlap. The first, fourth, and fifth examples do not generate
a warning because the number of leading zeros is less than the specified
minimum overlap. The last example generates an error because the input
range is quantized away, causing the binary representation of the converted
value to always be zero.

Example Input
Format

Fraction
Length

Scale
Value

Specified
Minimum
Overlap
(bits)

Binary
Representation
of Converted Scale
Value

Warning
Generated?

1 16 15 0.625 3 0.101000000000000 No. <3
leading zeros

2 16 15 0.247 3 0.001111110011101 Yes

3 8 4 2.25 2 0010.0100 Yes

4 8 4 4.125 2 0100.0010 No. <2
leading zeros

5 8 4 0.0625 8 0000.0001 No. <8
leading zeros

6 8 4 0.00625 8 0000.0000 No. Error.

By default, the minimum overlap is 3 bits. If this is not sufficient for your
filter design, adjust the setting as follows:

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the Advanced tab. The Advanced pane appears.

3-47

3 Generating HDL Code for a Filter Design

3 Specify a positive integer in the Minimum overlap of scale values (bits)
field, as shown in the following display. To suppress the warnings, specify
the number of bits in the input format.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property ScaleWarnBits to reset the minimum overlap of
scale values between filter coefficients and filter input.

Representing Constants with Aggregates
By default, the Filter Design HDL Coder represents constants as scalars or
aggregates depending on the size and type of the data. The coder represents
values that are less than 232 – 1 as integers and values greater than or equal
to 232 – 1 as aggregates. The following VHDL constant declarations are
examples of declarations generated by default for values less than 32 bits:

CONSTANT coeff1 :signed(15 DOWNTO 0) := to_signed(-30, 16);
CONSTANT coeff2 :signed(15 DOWNTO 0) := to_signed(-89, 16);

If you prefer that all constant values be represented as aggregates, you can
instruct the Filter Design HDL Coder to produce HDL code accordingly as
follows:

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the Advanced tab. The Advanced pane appears.

3-48

Customizing the HDL Code

3 Select Represent constant values by aggregates, as shown the
following display.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

The preceding constant declarations would now appear as follows:

CONSTANT coeff1 :signed(15 DOWNTO 0) := (4 DOWNTO 2 => '0', 0 =>'0',

OTHERS => ', '); -- sfix16_En15

CONSTANT coeff2 :signed(15 DOWNTO 0) := (6 => '0', 4 DOWNTO 3 => '0',

OTHERS => ', '); -- sfix16_En15

Command Line Alternative: Use the generatehdl and generatetb
functions with the property UseAggregatesForConst to represent all
constants in the HDL code as aggregates.

Unrolling and Removing VHDL Loops
By default, the Filter Design HDL Coder supports VHDL loops. However,
some EDA tools do not support them. If you are using such a tool along with
VHDL, you might need to unroll and remove FOR and GENERATE loops from
your filter’s generated VHDL code. Verilog code is always unrolled.

To unroll and remove FOR and GENERATE loops,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the Advanced tab. The Advanced pane appears.

3-49

3 Generating HDL Code for a Filter Design

3 Select Loop unrolling, as shown in the following display.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property LoopUnrolling to unroll and remove loops from
generated VHDL code.

Using the VHDL rising_edge Function
The Filter Design HDL Coder can generate two styles of VHDL code for
checking for rising edges when the filter operates on registers. By default, the
generated code checks for a clock event, as shown in the ELSIF statement of
the following VHDL process block.

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

ELSEIF clk'event AND clk = '1' THEN
IF clk_enable = '1' THEN

delay_pipeline(0) <= signed(filter_in);
delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

END IF;
END IF;

3-50

Customizing the HDL Code

END PROCESS Delay_Pipeline_Process ;

If you prefer, the coder can produce VHDL code that applies the VHDL
rising_edge function instead. For example, the ELSIF statement in the
preceding process block would be replaced with the following statement:

ELSIF rising_edge(clk) THEN

To use the rising_edge function,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the Advanced tab. The Advanced pane appears.

3 Select Use ’rising_edge’ for registers, as shown in the following dialog
box.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property UseRisingEdge to use the VHDL rising_edge
function to check for rising edges during register operations.

3-51

3 Generating HDL Code for a Filter Design

Suppressing the Generation of VHDL Inline
Configurations
VHDL configurations can be either inline with the rest of the VHDL code for
an entity or external in separate VHDL source files. By default, the Filter
Design HDL Coder includes configurations for a filter within the generated
VHDL code. If you are creating your own VHDL configuration files, you
should suppress the generation of inline configurations.

To suppress the generation of inline configurations,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the Advanced tab. The Advanced pane appears.

3 Clear Inline VHDL configuration, as shown in the following display.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property InlineConfigurations to suppress the
generation of inline configurations.

3-52

Customizing the HDL Code

Specifying VHDL Syntax for Concatenated Zeros
In VHDL, the concatenation of zeros can be represented in two syntax forms.
One form, '0' & '0', is type safe. This is the default. The alternative
syntax, "000000...", can be easier to read and is more compact, but can lead
to ambiguous types.

To use the syntax "000000..." for concatenated zeros,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the Advanced tab. The Advanced pane appears.

3 Clear Concatenate type safe zeros, as shown in the following display.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property SafeZeroConcat to use the syntax "000000...",
for concatenated zeros.

3-53

3 Generating HDL Code for a Filter Design

Suppressing Verilog Time Scale Directives
In Verilog, the Filter Design HDL Coder generates time scale directives
(`timescale) , as appropriate, by default. This compiler directive provides a
way of specifying different delay values for multiple modules in a Verilog file.

To suppress the use of `timescale directives,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the Advanced tab. The Advanced pane appears.

3 Clear Use Verilog `timescale directives, as shown in the following
display.

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property UseVerilogTimescale to suppress the use of
time scale directives.

3-54

Customizing the HDL Code

Specifying Input Type Treatment for Addition and
Subtraction Operations
MATLAB and typical DSP processors handle the treatment of input data
types for addition and subtraction operations differently. MATLAB operates
on input data using the data types as specified and converts the result to the
result type. Typical DSP processors, on the other hand, type cast input data
to the result type before operating on the data. Depending on the operation,
the results can be very different.

By default, the Filter Design HDL Coder applies the MATLAB treatment of
the input data. To specify the DSP processor treatment,

1 Click HDL Options in the HDL filter pane of the Generate HDL dialog
box. The HDL Options dialog box appears.

2 Select the Advanced tab. The Advanced pane appears.

3 Select Cast before sum, as shown in the following display.

Note The setting of this option overrides the FDATool setting for the
quantization parameter Cast signals before accum.

3-55

3 Generating HDL Code for a Filter Design

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property CastBeforeSum to cast input values to the result
type for addition and subtraction operations. The setting of this property
overrides the FDATool setting for the quantization parameter Cast signals
before accum.

3-56

Setting Optimizations

Setting Optimizations
The Filter Design HDL Coder provides options for optimizing generated filter
HDL code. You can optimize the code in a general sense by suppressing
bit compatibility with MATLAB. Options are also available for optimizing
multipliers and the final summation method used for FIR filters.

Code optimization options are listed in the HDL filter pane of the Generate
HDL dialog box, as shown below.

Note Some of the optimization settings generate HDL code that produces
numeric results that differ from results produced by the quantized filter
function.

The following sections discuss the various optimization options in more detail:

• “Optimizing Generated Code for HDL” on page 3-58

• “Optimizing Coefficient Multipliers” on page 3-59

• “Optimizing Final Summation for FIR Filters” on page 3-60

3-57

3 Generating HDL Code for a Filter Design

• “Speed vs. Area Optimizations for FIR Filters” on page 3-61

• “Distributed Arithmetic for FIR Filters” on page 3-71

• “Optimizing the Clock Rate with Pipeline Registers” on page 3-81

• “Setting Optimizations for Synthesis” on page 3-83

Optimizing Generated Code for HDL
By default, the Filter Design HDL Coder produces code that maintains bit
compatibility with the numeric results produced by the specified quantized
filter in MATLAB. You can choose to generate HDL code that is slightly
optimized for clock speed or space requirements. However, note that this
optimization causes the Filter Design HDL Coder to

• Make tradeoffs concerning data types

• Avoid extra quantization

• Generate code that produces numeric results that are different than the
filter results produced by MATLAB

To optimize generated code for clock speed or space requirements and
suppress bit compatibility with MATLAB,

1 Select Optimize for HDL in the HDL filter pane of the Generate HDL
dialog box.

2 Consider setting an error margin for the generated test bench. The error
margin is the number of least significant bits the test bench will ignore
when comparing the results. To set an error margin,

a Click Test Bench Options in the Test bench types pane of the
Generate HDL dialog box. The Test Bench Options dialog box appears.

b Specify an integer in the Error margin (bits) field that indicates an
acceptable minimum number of bits by which the numeric results can
differ before the coder issues a warning.

3 Continue setting other options or click Generate to initiate code
generation.

3-58

Setting Optimizations

Command Line Alternative: Use the generatehdl and generatetb
functions with the property OptimizeForHDL to enable the optimizations
described above.

Optimizing Coefficient Multipliers
By default, the Filter Design HDL Coder produces code that includes
coefficient multiplier operations. If necessary, you can optimize these
operations such that they decrease the area used and maintain or increase
clock speed. You do this by instructing the coder to replace multiplier
operations with additions of partial products produced by canonical signed
digit (CSD) or factored CSD techniques. These techniques minimize the
number of addition operations required for constant multiplication by
representing binary numbers with a minimum count of nonzero digits.
The amount of optimization you can achieve is dependent on the binary
representation of the coefficients used.

Note The Filter Design HDL Coder does not use coefficient multiplier
operations for multirate filters. Therefore, the Coeff multipliers options
described below are disabled for multirate filters.

Note When you apply CSD or factored CSD techniques, the generated test
bench can produce numeric results that differ from those produced by the
original MATLAB filter function, unless no rounding or saturation occurs.

To optimize coefficient multipliers (for nonmultirate filter types),

1 Select CSD or Factored-CSD from the Coeff multipliers menu in the HDL
filter pane of the Generate HDL dialog box.

2 Consider setting an error margin for the generated test bench to account
for numeric differences. The error margin is the number of least significant
bits the test bench will ignore when comparing the results. To set an error
margin,

a Click Test Bench Options in the Test bench types pane of the
Generate HDL dialog box. The Test Bench Options dialog box appears.

3-59

3 Generating HDL Code for a Filter Design

b Specify an integer in the Error margin (bits) field that indicates an
acceptable minimum number of bits by which the numeric results can
differ before the coder issues a warning.

c Click Apply to register the change or OK to register the change and
close the dialog box.

3 Continue setting other options or click Generate to initiate code
generation.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property CoeffMultipliers to optimize coefficient
multipliers with CSD techniques.

Optimizing Final Summation for FIR Filters
If you are generating HDL code for an FIR filter, consider optimizing the final
summation technique to be applied to the filter. By default, the Filter Design
HDL Coder applies linear adder summation, which is the final summation
technique discussed in most DSP text books. Alternatively, you can instruct
the coder to apply tree or pipeline final summation. When set to tree mode,
the coder creates a final adder that performs pair-wise addition on successive
products that execute in parallel, rather than sequentially. Pipeline mode
produces results similar to tree mode with the addition of a stage of pipeline
registers after processing each level of the tree.

In comparison,

• The number of adder operations for linear and tree mode are the same, but
the timing for tree mode might be significantly better due to summations
occurring in parallel.

• Pipeline mode optimizes the clock rate, but increases the filter latency by
the base 2 logarithm of the number of products to be added, rounded up to
the nearest integer.

• Linear mode ensures numeric accuracy in comparison to the original
MATLAB filter function. Tree and pipeline modes can produce numeric
results that differ from those produced by the filter function.

To change the final summation to be applied to an FIR filter,

3-60

Setting Optimizations

1 Select one of the following options in the HDL filter pane of the Generate
HDL dialog box:

For... Select...

Linear mode (the default) Linear from the FIR adder style menu

Tree mode Tree from the FIR adder style menu

Pipeline mode The Add pipeline registers check box

2 If you specify tree or pipelined mode, consider setting an error margin for
the generated test bench to account for numeric differences. The error
margin is the number of least significant bits the test bench will ignore
when comparing the results. To set an error margin,

a Click Test Bench Options in the Test bench types pane of the
Generate HDL dialog box. The Test Bench Options dialog box appears.

b Specify an integer in the Error margin (bits) field that indicates an
acceptable minimum number of bits by which the numeric results can
differ before the coder issues a warning.

c Click Apply to register the change or OK to register the change and
close the dialog box.

3 Continue setting other options or click Generate to initiate code
generation.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property FIRAdderStyle or AddPipelineRegisters to
optimize the final summation for FIR filters.

Speed vs. Area Optimizations for FIR Filters
Filter Design HDL Coder provides options that extend your control over
speed vs. area tradeoffs in the realization of FIR filter designs. To achieve
the desired tradeoff, you can either specify a fully parallel architecture
for generated HDL filter code, or choose one of several serial architectures.
Supported architectures are described in “Parallel and Serial Architectures”
on page 3-63.

3-61

3 Generating HDL Code for a Filter Design

The full range of parallel and serial architecture options is supported by
properties passed in to the generatehdl command, as described in “Specifying
Speed vs. Area Tradeoffs via generatehdl Properties” on page 3-64.

Alternatively, you can use the Architecture pop-up menu on the HDL
Options dialog box to choose parallel and serial architecture options, as
described in “Selecting Parallel and Serial Architectures in the Generate
HDL Dialog Box” on page 3-67.

The following table summarizes the filter types that are available for parallel
and serial architecture choices in Filter Design HDL Coder 1.5.

Architecture Available for Filter Types...

Fully parallel (default) All filter types that are supported for
HDL code generation

Fully serial • dfilt.dffir

• dfilt.dfsymfir

• dfilt.dfasymfir

• mfilt.firdecim

• mfilt.firinterp

Partly serial • dfilt.dffir

• dfilt.dfsymfir

• dfilt.dfasymfir

Cascade serial • dfilt.dffir

• dfilt.dfsymfir

• dfilt.dfasymfir

Note Filter Design HDL Coder also supports distributed arithemetic (DA),
another highly efficient architecture for realizing FIR filters. See “Distributed
Arithmetic for FIR Filters” on page 3-71 for information about how to use
this architecture.)

3-62

Setting Optimizations

Parallel and Serial Architectures

Fully Parallel Architecture. This is the default option. A fully parallel
architecture uses a dedicated multiplier and adder for each filter tap; all
taps execute in parallel. A fully parallel architecture is optimal for speed.
However, it requires more multipliers and adders than a serial architecture,
and therefore consumes more chip area.

Serial Architectures. Serial architectures reuse hardware resources in
time, saving chip area. Filter Design HDL Coder provides a range of serial
architecture options, summarized below. All of these architectures have a
latency of one clock period (see “Latency in Serial Architectures” on page 3-64).

The available serial architecture options are

• Fully serial: A fully serial architecture conserves area by reusing multiplier
and adder resources sequentially. For example, a four-tap filter design
would use a single multiplier and adder, executing a multiply/accumulate
operation once for each tap. The multiply/accumulate section of the design
runs at four times the filter’s input/output sample rate. This saves area at
the cost of some speed loss and higher power consumption.

In a fully serial architecture, the system clock runs at a much higher rate
than the sample rate of the filter. Thus, for a given filter design, the
maximum speed achievable by a fully serial architecture will be less than
that of a parallel architecture.

• Partly serial: Partly serial architectures cover the full range of speed vs.
area tradeoffs that lie between fully parallel and fully serial architectures.

In a partly serial architecture, the filter taps are grouped into a number of
serial partitions. The taps within each partition execute serially, but the
partitions execute in parallel with respect to one another. The outputs of
the partitions are summed at the final output.

When you select a partly serial architecture, you specify the number of
partitions and the length (number of taps) of each partition. For example,
you could specify a four-tap filter with two partitions, each having two taps.
The system clock would run at twice the filter’s sample rate.

• Cascade-serial: A cascade-serial architecture closely resembles a partly
serial architecture. As in a partly serial architecture, the filter taps are

3-63

3 Generating HDL Code for a Filter Design

grouped into a number of serial partitions that execute in parallel with
respect to one another. However, the accumulated output of each partition
is cascaded to the accumulator of the previous partition. The output of all
partitions is therefore computed at the accumulator of the first partition.
This technique is termed accumulator reuse. No final adder is required,
which saves area.

The cascade-serial architecture requires an extra cycle of the system clock
to complete the final summation to the output. Therefore, the frequency of
the system clock must be increased slightly with respect to the clock used
in a noncascade partly serial architecture.

To generate a cascade-serial architecture, you specify a partly serial
architecture with accumulator reuse enabled (see “Specifying Speed vs.
Area Tradeoffs via generatehdl Properties” on page 3-64). If you do not
specify the serial partitions, Filter Design HDL Coder automatically selects
an optimal partitioning.

Latency in Serial Architectures. Serialization of a filter increases the total
latency of the design by one clock cycle. The serial architectures use an
accumulator (an adder with a register) to sequentially add the products. An
additional final register is used to store the summed result of all the serial
partitions. An extra clock cycle is required for the operation.

Specifying Speed vs. Area Tradeoffs via generatehdl Properties
By default, generatehdl generates filter code using a fully parallel
architecture. If you want to generate FIR filter code with a fully parallel
architecture, you do not need to specify this explicitly.

Two properties are provided to specify serial architecture options when
generating code via generatehdl:

'SerialPartition': This property specifies the serial partitioning of the
filter.

'ReuseAccum': This property enables or disables accumulator reuse.

3-64

Setting Optimizations

The table below summarizes how to set these properties to generate the
desired architecture. The table is followed by several examples.

To Generate This
Architecture...

Set SerialPartition to... Set ReuseAccum
to...

Fully parallel Omit this property Omit this property

Fully serial N, where N is the length of the filter Not specified, or
'off'

Partly serial [p1 p2 p3...pN] : a vector of integers
having N elements, where N is the number
of serial partitions. Each element of
the vector specifies the length of the
corresponding partition. The sum of the
vector elements must be equal to the
length of the filter.

'off'

Cascade-serial with
explicitly specified
partitioning

[p1 p2 p3...pN]: a vector of integers
having N elements, where N is the number
of serial partitions. Each element of
the vector specifies the length of the
corresponding partition. The sum of the
vector elements must be equal to the
length of the filter.

'on'

Cascade-serial with
automatically optimized
partitioning

Omit this property 'on'

Specifying Parallel and Serial FIR Architectures in generatehdl.
The following examples show the use of the 'SerialPartition' and
'ResuseAccum' properties in generating code with the generatehdl function.
All examples assume that a direct-form FIR filter has been created in the
MATLAB workspace as follows:

Hd = design(fdesign.lowpass('N,Fc',8,.4));
Hd.arithmetic = 'fixed';

In this example, a fully parallel architecture is generated (by default).

generatehdl(Hd, 'Name','FullyParallel');

3-65

3 Generating HDL Code for a Filter Design

Starting VHDL code generation process for filter: FullyParallel

Generating: D:\Work\test\hdlsrc\FullyParallel.vhd

Starting generation of FullyParallel VHDL entity

Starting generation of FullyParallel VHDL architecture

HDL latency is 2 samples

Successful completion of VHDL code generation process for filter: FullyParallel

In this example, a fully serial architecture is generated. Notice that the
system clock rate is nine times the filter’s sample rate. Also, the HDL latency
reported is one sample greater than in the previous (parallel) example.

generatehdl(Hd,'SerialPartition',9, 'Name','FullySerial')

Starting VHDL code generation process for filter: FullySerial

Generating: D:\Work\test\hdlsrc\FullySerial.vhd

Starting generation of FullySerial VHDL entity

Starting generation of FullySerial VHDL architecture

Clock rate will be 9 times the input sample rate for this arch.

There are 1 serial sections.

Serial section 1 - 9 inputs.

HDL latency is 3 samples

Successful completion of VHDL code generation process for filter: FullySerial

In this example, a partly serial architecture with three partitions is generated.

generatehdl(Hd,'SerialPartition',[3 4 2], 'Name', 'PartlySerial')

Starting VHDL code generation process for filter: PartlySerial

Generating: D:\Work\test\hdlsrc\PartlySerial.vhd

Starting generation of PartlySerial VHDL entity

Starting generation of PartlySerial VHDL architecture

Clock rate will be 3 times the input sample rate for this arch.

There are 3 serial sections.

Serial section 1 - 4 inputs.

Serial section 2 - 3 inputs.

Serial section 3 - 2 inputs.

HDL latency is 3 samples

Successful completion of VHDL code generation process for filter: PartlySerial

In this example, a cascade-serial architecture with three partitions is
generated. Note that the clock rate is higher than that in the previous (partly
serial without accumulator reuse) example.

3-66

Setting Optimizations

generatehdl(Hd,'SerialPartition',[4 3 2], 'ReuseAccum', 'on','Name','CascadeSerial')

Starting VHDL code generation process for filter: CascadeSerial

Generating: D:\Work\test\hdlsrc\CascadeSerial.vhd

Starting generation of CascadeSerial VHDL entity

Starting generation of CascadeSerial VHDL architecture

Clock rate will be 5 times the input sample rate for this arch.

There are 3 serial sections.

Serial section 1 - 4 inputs.

Serial section 2 - 3 inputs.

Serial section 3 - 2 inputs.

HDL latency is 3 samples

Successful completion of VHDL code generation process for filter: CascadeSerial

In this example, a cascade-serial architecture is generated, with the
partitioning automatically determined by Filter Design HDL Coder.

generatehdl(Hd,'ReuseAccum','on', 'Name','CascadeSerial')

Starting VHDL code generation process for filter: CascadeSerial

Generating: D:\Work\test\hdlsrc\CascadeSerial.vhd

Starting generation of CascadeSerial VHDL entity

Starting generation of CascadeSerial VHDL architecture

Clock rate will be 5 times the input sample rate for this arch.

There are 3 serial sections.

Serial section 1 - 4 inputs.

Serial section 2 - 3 inputs.

Serial section 3 - 2 inputs.

HDL latency is 3 samples

Successful completion of VHDL code generation process for filter: CascadeSerial

Selecting Parallel and Serial Architectures in the Generate HDL
Dialog Box
The Architecture pop-up menu, located on the Generate HDL dialog box,
lets you select parallel and serial architecture options corresponding to those
described in “Parallel and Serial Architectures” on page 3-63. These options
are

• Fully parallel (default)

3-67

3 Generating HDL Code for a Filter Design

• Fully serial: Nonpartitioned serial architecture, without accumulator
reuse

• Partly serial: Partitioned serial architecture, without accumulator
resuse (See “Specifying Partitions for Partly Serial and Cascade Serial
Architectures” on page 3-69.)

• Cascade serial: Partitioned serial architecture, with accumulator
reuse (See “Specifying Partitions for Partly Serial and Cascade Serial
Architectures” on page 3-69.)

Note The Architecture pop-up menu also includes the Distributed
arithmetic (DA) option (see “Distributed Arithmetic for FIR Filters” on
page 3-71).

3-68

Setting Optimizations

The default (Fully parallel) setting is shown in the following figure.

Specifying Partitions for Partly Serial and Cascade Serial
Architectures. When you select the Partly serial or Cascade serial
option, the Generate HDL dialog box displays the Serial Partition field
(shown in the following figure).

3-69

3 Generating HDL Code for a Filter Design

The Serial Partition field lets you enter a vector of integers specifying the
number and size of the partitions, as described in “Specifying Speed vs. Area
Tradeoffs via generatehdl Properties” on page 3-64.

By default, Serial Partition divides the filter into two partitions. For
example, the preceding figure shows the default partition (5 4) for a filter
with 9 taps.

3-70

Setting Optimizations

Interactions Between Architecture Options and Other HDL Options.
Selection of some Architecture menu options may change or disable other
options, as described below.

• When the Fully serial option is selected, the following options are set to
their default values and disabled:

- Coeff multipliers

- Add pipeline registers

- FIR adder style

• When the Partly serial option is selected, the Coeff multipliers option
is set to its default value and disabled.

• When the Cascade serial option is selected, the following options are set
to their default values and disabled:

- Coeff multipliers

- Add pipeline registers

- FIR adder style

Distributed Arithmetic for FIR Filters
Distributed Arithmetic (DA) is a widely-used technique for implementing
sum-of-products computations without the use of multipliers. Designers
frequently use DA to build efficient Multiply-Accumulate Circuitry (MAC) for
filters and other DSP applications.

The main advantage of DA is its high computational efficiency. DA distributes
multiply and accumulate operations across shifters, lookup tables (LUTs) and
adders in such a way that conventional multipliers are not required.

Filter Design HDL Coder supports DA in HDL code generated for several
single-rate and multirate FIR filter structures (see “Requirements and
Considerations for Generating Distributed Arithmetic Code” on page 3-73).
Only fixed-point filter designs are supported.

Distributed Arithmetic Overview
This section briefly summarizes of the operation of DA. Detailed discussions
of the theoretical foundations of DA appear in the following publications:

3-71

3 Generating HDL Code for a Filter Design

• Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate
Arrays, Second Edition, Springer, pp 88–94, 128–143

• White, S.A., Applications of Distributed Arithmetic to Digital Signal
Processing: A Tutorial Review. IEEE ASSP Magazine, Vol. 6, No. 3

In a DA realization of a FIR filter structure, a sequence of input data words of
width W is fed through a parallel to serial shift register, producing a serialized
stream of bits. The serialized data is then fed to a bit-wide shift register. This
shift register serves as a delay line, storing the bit serial data samples.

The delay line is tapped (based on the input word size W), to form a W-bit
address that indexes into a lookup table (LUT). The LUT stores all possible
sums of partial products over the filter coefficients space. The LUT is followed
by a shift and adder (scaling accumulator) that adds the values obtained
from the LUT sequentially.

A table lookup is performed sequentially for each bit (in order of significance
starting from the LSB). On each clock cycle, the LUT result is added to the
accumulated and shifted result from the previous cycle. For the last bit (MSB),
the table lookup result is subtracted, accounting for the sign of the operand.

This basic form of DA is fully serial, operating on one bit at a time. If the
input data sequence is W bits wide, then a FIR structure takes W clock cycles
to compute the output. Symmetric and asymmetric FIR structures are an
exception, requiring W+1 cycles, because one additional clock cycle is needed to
process the carry bit of the pre-adders.

Improving Performance with Parallelism. The inherently bit serial
nature of DA can limit throughput. To improve throughput, the basic DA
algorithm can be modified to compute more than one bit sum at a time. The
number of simultaneously computed bit sums is expressed as a power of two
called the DA radix. For example, a DA radix of 2 (2^1) indicates that one bit
sum is computed at a time; a DA radix of 4 (2^2) indicates that two bit sums
are computed at a time, and so on.

To compute more than one bit sum at a time, the LUT is replicated. For
example, to perform DA on 2 bits at a time (radix 4), the odd bits are fed to
one LUT and the even bits are simultaneously fed to an identical LUT. The
LUT results corresponding to odd bits are left-shifted before they are added

3-72

Setting Optimizations

to the LUT results corresponding to even bits. This result is then fed into a
scaling accumulator that shifts its feedback value by 2 places.

Processing more than one bit at a time introduces a degree of parallelism into
the operation, improving performance at the expense of area. The DARadix
property lets you specify the number of bits processed simultaneously in DA
(see “DARadix Property” on page 3-77).

Reducing LUT Size. The size of the LUT grows exponentially with the order
of the filter. For a filter with N coefficients, the LUT must have 2^N values.
For higher order filters, LUT size must be reduced to reasonable levels. To
reduce the size, you can subdivide the LUT into a number of LUTs, called
LUT partitions. Each LUT partition operates on a different set of taps. The
results obtained from the partitions are summed.

For example, for a 160 tap filter, the LUT size is (2^160)*W bits, where W is
the word size of the LUT data. Dividing this into 16 LUT partitions, each
taking 10 inputs (taps), the total LUT size is reduced to 16*(2^10)*W bits, a
significant reduction.

Although LUT partitioning reduces LUT size, more adders are required to
sum the LUT data.

The DALUTPartition property lets you specify how the LUT is partitioned in
DA (see “DALUTPartition Property” on page 3-74).

Requirements and Considerations for Generating Distributed
Arithmetic Code
Filter Design HDL Coder lets you control how DA code is generated using the
DALUTPartition and DARadix properties (or equivalent Generate HDL dialog
box options). Before using these properties, review the following general
requirements, restrictions, and other considerations for generation of DA code.

Supported Filter Types. Filter Design HDL Coder supports DA in HDL code
generated for the following single-rate and multirate FIR filter structures:

• dfilt.dffir

• dfilt.dfsymfir

3-73

3 Generating HDL Code for a Filter Design

• dfilt.dfasymfir

• mfilt.firdecim

• mfilt.firinterp

Requirements Specific to Filter Type. The DALUTPartition and DARadix
properties have certain requirements and restrictions that are specific to
different filter types. These requirements are included in the discussions
of each property:

• “DALUTPartition Property” on page 3-74

• “DARadix Property” on page 3-77

Fixed Point Quantization Required. Generation of DA code is supported
only for fixed-point filter designs. If you are designing your filter in FDATool,
select Fixed-point from the Filter arithmetic list in the Quantization
Parameters pane. If you are creating a filter object in MATLAB, set the
arithmetic property of your filter object to'fixed'.

Specifying Filter Precision. The data path in HDL code generated for the
DA architecture is carefully optimized for full precision computations. The
filter result is cast to the output data size only at the final stage when it is
presented to the output. If the FilterInternals property is set to the default
(FullPrecision), numeric results obtained from simulation of the generated
HDL code are bit-true to filter results produced by MATLAB.

If the FilterInternals property is set to SpecifyPrecision and you change
filter word or fraction lengths, generated DA code may produce numeric
results that are different than the filter results produced by MATLAB.

DALUTPartition Property
Syntax: 'DALUTPartition', [p1 p2... pN]

DALUTPartition enables DA code generation and specifies the number and
size of LUT partitions used for DA.

Specify LUT partitions as a vector of integers [p1 p2...pN] where

• N is the number of partitions.

3-74

Setting Optimizations

• Each vector element specifies the size of a partition. The maximum size for
an individual partition is 12.

• The sum of all vector elements equals the filter length FL. FL is calculated
differently depending on the filter type (see “Specifying DALUTPartition
for Single-Rate Filters” on page 3-75 and “Specifying DALUTPartition
for Multirate Filters” on page 3-76).

To enable generation of DA code for your filter design without LUT
partitioning, specify a vector of one element, whose value is equal to the filter
length, as in the following example:

b = [0.0349 0.4302 0.4302 0.4302 0.0349];
Hd = dfilt.dffir(b);
Hd.arithmetic = 'fixed';
generatehdl (Hd, 'DALUTPartition', 5);

Specifying DALUTPartition for Single-Rate Filters. To determine the
LUT partition for one of the supported single-rate filter types, calculate FL as
shown in the following table. Then, specify the partition as a vector whose
elements sum to FL.

Filter Type Filter Length (FL) Calculation

dfilt.dffir
FL = length(find(Hd.numerator~= 0))

dfilt.dfsymfir
dfilt.dfasymfir FL = ceil(length(find(Hd.numerator~= 0))/2)

The following example shows the FL calculation and one possible partitioning
for a direct form FIR filter:

filtdes = fdesign.lowpass('N,Fc,Ap,Ast',30,0.4,0.05,0.03,'linear');
Hd = design(filtdes,'filterstructure','dffir');
Hd.arithmetic = 'fixed';
FL = length(find(Hd.numerator~= 0))

FL =

3-75

3 Generating HDL Code for a Filter Design

31
generatehdl(Hd, 'DALUTPartition',[8 8 8 7]);

The following example shows the FL calculation and one possible partitioning
for a direct-form symmetric FIR filter:

Hd = design(filtdes,'filterstructure','dfsymfir');
Hd.arithmetic = 'fixed';
FL = ceil(length(find(Hd.numerator~= 0))/2)

FL =

16
generatehdl(Hd, 'DALUTPartition',[8 8]);

Specifying DALUTPartition for Multirate Filters. For supported multirate
filters (mfilt.firdecim and mfilt.firinterp) , you can specify the LUT
partition as

• A vector defining a partition for LUTs for all polyphase subfilters.

• A matrix of LUT partitions, where each row vector specifies a LUT partition
for a corresponding polyphase subfilter. In this case, the FL is uniform for
all subfilters. This approach provides a fine control for partitioning each
subfilter.

The following table shows the FL calculations for each type of LUT partition.

3-76

Setting Optimizations

LUT Partition Specified As... Filter Length (FL) Calculation

Vector: determine FL as shown in the Filter Length
(FL) Calculation column to the right. Specify the LUT
partition as a vector of integers whose elements sum to
FL.

FL = size(polyphase(Hm), 2)

Matrix: determine the subfilter length FLi based on the
polyphase decomposition of the filter, as shown in the
Filter Length (FL) Calculation column to the right.
Specify the LUT partition for each subfilter as a row
vector whose elements sum to FLi.

p = polyphase(Hm);
FLi = length(find(p(i,:)));

where i is the index to the ith row of
the polyphase matrix of the multirate
filter. The ith row of the matrix p
represents theith subfilter.

The following example shows the FL calculation for a direct-form FIR
polyphase decimator, with the LUT partition specified as a vector:

Hm = mfilt.firdecim(4);
Hm.arithmetic = 'fixed';
FL = size(polyphase(Hm),2)

FL =

24

generatehdl(Hm, 'DALUTPartition',[8 8 8]);

The following example shows the LUT partition specified as a maxtrix for the
same direct-form FIR polyphase decimator:

Hm = mfilt.firdecim(4);

Hm.arithmetic = 'fixed';

generatehdl(Hm, 'DALUTPartition',[1 0 0 0; 7 7 7 3; 8 8 6 2; 8 8 8 0]);

DARadix Property
Syntax: 'DARadix', N

3-77

3 Generating HDL Code for a Filter Design

DARadix specifies the number of bits processed simultaneously in DA. The
number of bits is expressed as N, which must be

• A nonzero positive integer that is a power of two

• Such that mod(W, log2(N)) = 0 where W is the input word size of the filter.

The default value for N is 2, specifying processing of one bit at a time, or fully
serial DA, which is slow but low in area. The maximum value for N is 2^W,
where W is the input word size of the filter. This maximum specifies fully
parallel DA, which is fast but high in area. Values of N between these extrema
specify partly serial DA.

Note When setting a DARadix value for symmetrical (dfilt.dfsymfir) and
asymmetrical (dfilt.dfasymfir) filters, see “Considerations for Symmetrical
and Asymmetrical Filters” on page 3-78.

Special Cases

Coefficients with Zero Values. DA ignores taps that have zero-valued
coefficients and reduces the size of the DA LUT accordingly.

Considerations for Symmetrical and Asymmetrical Filters. For
symmetrical (dfilt.dfsymfir) and asymmetrical (dfilt.dfasymfir) filters:

• A bit-level preadder or presubtractor is required to add tap data values
that have coefficients of equal value and opposite sign. One extra clock
cycle is required to compute the result because of the additional carry bit.

• Filter Design HDL Coder takes advantage of filter symmetry where
possible. This reduces the DA LUT size substantially , because the effective
filter length for these filter types is halved.

• If a DARadix value greater than 2 is passed in for these filter types, a
warning is displayed and the symmetry or asymmetry in the filter structure
is ignored in HDL code generation.

3-78

Setting Optimizations

Distributed Arithmetic Options in the Generate HDL Dialog Box
This section describes Generate HDL dialog box options related to DA code
generation. The following figure shows these options.

The DA related options are:

• The Architecture pop-up menu, which lets you enable DA code generation
and displays related options

• The LUT Partition field, which displays and lets you change the value of
the DALUTPartition property

• The DA Radix field, which displays and lets you change the value of the
DARadix property

The Generate HDL dialog box initially displays default DA related option
values that are appropriate for the current filter design. In other respects,
the requirements for setting these options are identical to those described in
“DALUTPartition Property” on page 3-74 and “DARadix Property” on page
3-77.

To specify DA code generation using the Generate HDL dialog box, follow
these steps:

1 In FDATool, design a FIR filter that meets the requirements described in
“Requirements and Considerations for Generating Distributed Arithmetic
Code” on page 3-73.

2 Open the Generate HDL dialog box by selecting Targets > Generate HDL
from the FDATool menu.

3-79

3 Generating HDL Code for a Filter Design

3 Select Distributed Arithmetic (DA) from the Architecture pop-up
menu.

When you select this option, the related LUT Partition and DA Radix
options are displayed to the right of the Architecture menu. The following
figure shows the default DA options for a Direct Form FIR filter.

The default value for LUT Partition is a vector of integers such that each
partition has a maximum of 8 inputs. The figure illustrates a 51-tap filter,

3-80

Setting Optimizations

with 7 partitions. All partitions have 8 inputs except for the last, which
has 3 inputs.

4 If desired, set the LUT Partition field to a nondefault value. See
“DALUTPartition Property” on page 3-74 for detailed information.

5 The default DA Radix value is 2, specifying processing of one bit at a time,
or fully serial DA. If desired, set the DA Radix field to a nondefault value.
See “DARadix Property” on page 3-77 for detailed information.

If you are setting the DA Radix value for a dfilt.dfsymfir and
dfilt.dfasymfir filter, see “Considerations for Symmetrical and
Asymmetrical Filters” on page 3-78.

6 Set other HDL options as required, and generate code. Incorrect or illegal
values for LUT Partition or DA Radix are reported at code generation
time.

DA Interactions with Other HDL Options. When Distributed
Arithmetic (DA) is selected in the Architecture menu, some other HDL
options change automatically to settings that are appropriate for DA code
generation:

• Coefficient multipliers is set to Multiplier and disabled.

• FIR adder style is set to Tree and disabled.

• Add input register in the Ports pane of the HDL Options dialog box is
selected and disabled. (An input register, used as part of a shift register,
is always used in DA code.)

• Add output register in the Ports pane of the HDL Options dialog box is
selected and disabled.

Optimizing the Clock Rate with Pipeline Registers
You can optimize the clock rate used by filter code by applying pipeline
registers. Although the registers increase the overall filter latency and space
used, they provide significant improvements to the clock rate. These registers
are disabled by default. When you enable them, the coder adds registers
between stages of computation in a filter.

3-81

3 Generating HDL Code for a Filter Design

For... Pipeline Registers Are Added
Between...

FIR, antisymmetric FIR, and symmetric
FIR filters

Each level of the final
summation tree

Transposed FIR filters Coefficient multipliers and
adders

IIR filters Sections

For example, for a sixth order IIR filter, the coder adds two pipeline registers,
one between the first and second section and one between the second and
third section.

For FIR filters, the use of pipeline registers optimizes filter final summation.
For details, see “Optimizing Final Summation for FIR Filters” on page 3-60.

Note The use of pipeline registers in FIR, antisymmetric FIR, and
symmetric FIR filters can produce numeric results that differ from those
produced by the original MATLAB filter function because they force the tree
mode of final summation.

To use pipeline registers,

1 Select the Add pipeline registers option in the HDL filter pane of the
Generate HDL dialog box.

2 For FIR, antisymmetric FIR, and symmetric FIR filters, consider setting
an error margin for the generated test bench to account for numeric
differences. The error margin is the number of least significant bits the test
bench will ignore when comparing the results. To set an error margin:

a Click Test Bench Options in the Test bench types pane of the
Generate HDL dialog box. The Test Bench Options dialog box appears.

b Specify an integer in the Error margin (bits) field that indicates an
acceptable minimum number of bits by which the numerical results can
differ before the coder issues a warning.

3-82

Setting Optimizations

c Click Apply to register the change or OK to register the change and
close the dialog box.

3 Continue setting other options or click Generate to initiate code
generation.

Command Line Alternative: Use the generatehdl and generatetb
functions with the property AddPipelineRegisters to optimize the filters
with pipeline registers.

Setting Optimizations for Synthesis
The following table maps various synthesis goals with optimization settings
that can help you achieve those goals. Use the table as a guide, while
understanding that your results may vary depending on your synthesis
target. For example, if you target FPGAs with built-in multipliers, the benefit
of using CSD or factored CSD can be quite small until you utilize all the
built-in multipliers. In an ASIC application, where the ability to route the
design largely controls the speed, the difference in speed between a linear and
tree FIR adder style can be negligible. It may be necessary for you to combine
various option settings to achieve your synthesis goals.

To... Select... Which... At the Cost of...

Slightly increase
the clock speed and
slightly decrease the
area used

Optimize for HDL Removes extra
quantization
operations

Not remaining bit-true to
MATLAB.

Increase the
clock speed while
maintaining the area
used

Tree for FIR adder
style

Computes final
summation for FIR,
asymmetric FIR,
and symmetric FIR
pair-wise in parallel

Generally, not remaining
bit-true to MATLAB.
Bit-true to MATLAB
only if no rounding or
saturation occurs during
final summation.

Significantly increase
the clock speed while
increasing overall
latency and the area
used

Add pipeline
registers

Adds pipeline
registers and forces
use of the Tree
FIR adder style, as
necessary

Not remaining bit-true to
MATLAB when the FIR
adder style is forced to
Tree.

3-83

3 Generating HDL Code for a Filter Design

To... Select... Which... At the Cost of...

Decrease the
area used while
maintaining or
increasing clock speed
(depends on binary
representation of
coefficients)

CSD for Coefficient
multipliers

Uses shift and add
techniques instead
of multipliers

Generally, not remaining
bit-true to MATLAB.
Bit-true to MATLAB
only if no rounding or
saturation occurs.

Decrease the area
used (lower than what
is achieved with CSD)
while decreasing the
clock speed

Factored CSD
for Coefficient
multipliers

Uses shift and add
techniques on the
prime factors of
coefficients instead
of multipliers

Generally, not remaining
bit-true to MATLAB.
Bit-true to MATLAB
only if no rounding or
saturation occurs.

3-84

Generating Code for Multirate Filters

Generating Code for Multirate Filters

Supported Multirate Filter Types
The Filter Design HDL Coder supports code generation for several types of
multirate filters:

• Cascaded Integrator Comb (CIC) interpolation (mfilt.cicdecim)

• Cascaded Integrator Comb (CIC) decimation (mfilt.cicinterp)

• Direct-Form Transposed FIR Polyphase Decimator (mfilt.firtdecim)

• Direct-Form FIR Polyphase Interpolator (mfilt.firinterp)

• Direct-Form FIR Polyphase Decimator (mfilt.firdecim)

• FIR Hold Interpolator (mfilt.holdinterp)

• FIR Linear Interpolator (mfilt.linearinterp)

Generating Mutirate Filter Code
To generate multirate filter code, you must first select and design one of
the supported filter types in the multirate design panel of FDATool. (See
“Designing Multirate Filters in FDATool” in the Filter Design Toolbox
documentation for information about multirate filter design.)

After you have created the filter, open the Generate HDL dialog box, set the
desired code generation properties, and generate code. GUI options that
support multirate filter code generation are described in “Code Generation
Options for Multirate Filters” on page 3-85.

If you prefer to generate code via the generatehdlfunction, the Filter Design
HDL Coder also defines multirate filter code generation properties that are
functionally equivalent to the GUI options. These properties are summarized
in “generatehdl Properties for Multirate Filters” on page 3-91.

Code Generation Options for Multirate Filters
When a multirate filter of a supported type (see “Supported Multirate Filter
Types” on page 3-85) is designed in fdatool, the enabled/disabled state of
several options in the Generate HDL dialog box changes:

3-85

3 Generating HDL Code for a Filter Design

• The Clock inputs pull-down menu is enabled. This menu provides two
alternatives for generating clock inputs for multirate filters, as discussed
below.

• The ModelSim .do file option is disabled. Generation of ModelSim .do
test bench files is not supported for multirate filters.

• For CIC filters, the Coefficient multipliers option is disabled. Coefficient
multipliers are not used in CIC filters.

However, the Coefficient multipliers option is enabled for Direct-Form
Transposed FIR Polyphase Decimator (mfilt.firtdecim) filters.

• For CIC filters, the FIR adder style option is disabled, since CIC filters
do not require a final adder.

3-86

Generating Code for Multirate Filters

The following figure shows the default settings of the Generate HDL dialog
box options when a supported CIC filter has been designed in fdatool.

The Clock inputs options are

• Single: When Single is selected, the ENTITY declaration for the filter
defines a single clock input with an associated clock enable input and clock
enable output. The generated code maintains a counter that controls the
timing of data transfers to the filter output (for decimation filters) or input

3-87

3 Generating HDL Code for a Filter Design

(for interpolation filters). The counter is, in effect, a secondary clock enable
whose rate is determined by the filter’s decimation or interpolation factor.

The Single option is primarily intended for FPGAs. It provides a
self-contained solution for multirate filters, and does not require you to
provide any additional code.

A clock enable output is also generated when Single is selected. If you
want to customize the name of this output in generated code, see “Setting
the Clock Enable Output Name” on page 3-90.

The following code excerpts were generated from a CIC decimation filter
having a decimation factor of 4, with Clock inputs set to Single.

The ENTITY declaration is as follows.

ENTITY cic_decim_4_1_single IS

PORT(clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

filter_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16_En15

filter_out : OUT std_logic_vector(15 DOWNTO 0); -- sfix16_En15

ce_out : OUT std_logic

);

END cic_decim_4_1_single;

The signal counter is maintained by the clock enable output process
(ce_output). Every 4th clock cycle, counter is toggled to 1.

ce_output : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

cur_count <= to_unsigned(0, 4);

ELSIF clk'event AND clk = '1' THEN

IF clk_enable = '1' THEN

IF cur_count = 3 THEN

cur_count <= to_unsigned(0, 4);

ELSE

cur_count <= cur_count + 1;

END IF;

END IF;

END IF;

3-88

Generating Code for Multirate Filters

END PROCESS ce_output;

counter <= '1' WHEN cur_count = 1 AND clk_enable = '1' ELSE '0';

The following code excerpt illustrates a typical use of the counter signal, in
this case to time the filter output.

output_reg_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

output_register <= (OTHERS => '0');

ELSIF clk'event AND clk = '1' THEN

IF counter = '1' THEN

output_register <= section_out4;

END IF;

END IF;

END PROCESS output_reg_process;

• Multiple: When Multiple is selected, the ENTITY declaration for the filter
defines separate clock inputs (each with an associated clock enable input)
for each rate of a multirate filter. (For currently supported multirate filters,
there are two such rates).

The generated code assumes that the clocks are driven at the appropriate
rates. You are responsible for ensuring that the clocks run at the correct
relative rates for the filter’s decimation or interpolation factor. To see an
example of such code, generate test bench code for your multirate filter and
examine the clk_gen processes for each clock.

The Multiple option is intended for ASICs and FPGAs. It provides more
flexibility than the Single option, but assumes that you will provide
higher-level code for driving your filter’s clocks.

Note that no synchronizers between multiple clock domains are provided.

When Multiple is selected, clock enable outputs are not generated;
therefore the Clock enable output port field of the HDL Options dialog
box is disabled.

The following ENTITY declaration was generated from a CIC decimation
filter with Clock inputs set to Multiple.

ENTITY cic_decim_4_1_multi IS

3-89

3 Generating HDL Code for a Filter Design

PORT(clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

filter_in : IN std_logic_vector(15 DOWNTO 0); -- sfix16_En15

clk1 : IN std_logic;

clk_enable1 : IN std_logic;

reset1 : IN std_logic;

filter_out : OUT std_logic_vector(15 DOWNTO 0) -- sfix16_En15

);

END cic_decim_4_1_multi;

Setting the Clock Enable Output Name
A clock enable output is generated when Single is selected from the Clock
inputs options in the Generate HDL dialog box. The default name for the
clock enable output is ce_out.

To change the name of the clock enable output, enter the desired name into
the Clock enable output port field of the HDL Options dialog box, as shown
in the following figure.

3-90

Generating Code for Multirate Filters

Note that the Clock enable output port field is disabled when multiple
clocks are being generated.

Generating Test Bench Code for Multirate Filters
You can generate VHDL or Verilog test bench files for multirate filters.
Generation of ModelSim .do test bench files is not supported for multirate
filters, and the ModelSim .do file option of the Generate HDL dialog box
is disabled.

generatehdl Properties for Multirate Filters
If you are using generatehdl to generate code for a multirate filter, you can
set the following properties to specify clock generation options:

• ClockInputs: Corresponds to the Clock inputs option; selects generation
of single or multiple clock inputs for multirate filters.

• ClockEnableOutputPort: Corresponds to the Clock enable output port
field; specifies the name of the clock enable output port.

3-91

3 Generating HDL Code for a Filter Design

Generating Code for Cascade Filters

Supported Cascade Filter Types
The Filter Design HDL Coder supports code generation for the following types
of cascade filters:

• Multirate cascade of filter objects (mfilt.cascade)

• Cascade of discrete-time filter objects (dfilt.cascade)

Generating Cascade Filter Code
To generate cascade filter code,

1 Instantiate the filter stages and cascade them in the MATLAB workspace
(see the Filter Design Toolbox documentation for the mfilt.cascade and
mfilt.cascade filter objects).

The Filter Design HDL Coder currently imposes certain limitations on
the filter types allowed in a cascade filter. See “Rules and Limitations for
Code Generation with Cascade Filters” on page 3-92 before creating your
filter stages and cascade filter object.

2 Import the cascade filter object into FDATool, as described in “Importing
and Exporting Quantized Filters” in the Filter Design Toolbox
documentation.

3 After you have imported the filter, open the Generate HDL dialog box, set
the desired code generation properties, and generate code. See “Rules and
Limitations for Code Generation with Cascade Filters” on page 3-92

4 Note that the Filter Design HDL Coder generates separate HDL code
files for each stage of the cascade, in addition to the top-level code for the
cascade filter itself. The filter stage code files are identified by appending
the string _stage1, _stage2, ... _stageN to the filter name.

Rules and Limitations for Code Generation with Cascade Filters
The following rules and limitations apply to cascade filters when used for
code generation:

3-92

Generating Code for Cascade Filters

• You can generate code for cascades that combine the following filter types:

- Decimators and/or single-rate filter structures

- Interpolators and/or single-rate filter structures

Code generation for cascades that include both decimators and interpolators
is not currently supported, however. If unsupported filter structures
or combinations of filter structures are included in the cascade, code
generation is disallowed.

• For code generation, only a flat (single-level) cascade structure is allowed.
Nesting of cascade filters is disallowed.

• By default, all input /output registers are removed from the stages of the
cascade in generated code, except for the input of the first stage and the
output of the final stage. However, if the Add pipeline registers option in
Generate HDL dialog box is selected, the output registers for each stage
are generated, and internal pipeline registers may be added, depending on
the filter structures.

Note Code generated for interpolators within a cascade always includes
input registers, regardless of the setting of the Add pipeline registers
option.

• When a cascade filter is created in fdatool, the enabled/disabled state of
several options in the Generate HDL dialog box changes:

- The ModelSim .do file option is disabled. Generation of ModelSim .do
test bench files is not supported for multirate filters.

- The FIR adder style option is disabled. If you require tree adders for
FIR filters in a cascade, select the Add pipeline registers option (since
pipelines require tree style FIR adders).

3-93

3 Generating HDL Code for a Filter Design

The following figure shows the default settings of the Generate HDL dialog
box options when a cascade filter has been designed in fdatool.

3-94

Customizing the Test Bench

Customizing the Test Bench
In addition to generating HDL code for your quantized filter, the Filter Design
HDL Coder generates a test bench you can use to verify filter results. The type
of test bench, configurations for clock and reset signals, and the test stimuli
will vary depending on your development environment and the filter you are
testing. The following sections explain how to customize a test bench by

• “Renaming the Test Bench” on page 3-95

• “Specifying a Test Bench Type” on page 3-97

• “Configuring the Clock” on page 3-99

• “Configuring Resets” on page 3-101

• “Setting a Hold Time for Data Input Signals” on page 3-103

• “Setting an Error Margin for Optimized Filter Code” on page 3-104

• “Setting Test Bench Stimuli” on page 3-106

Renaming the Test Bench
As discussed in “Customizing Reset Specifications” on page 3-29, the Filter
Design HDL Coder derives the name of the test bench file from the name
of the quantized filter for which the HDL code is being generated and the
postfix _tb. The file type extension depends on the type of test bench that is
being generated.

If the Test Bench Is a... The Extension Is...

Verilog file Defined by the Verilog file extension field in
the General pane of the HDL Options dialog
box

VHDL file Defined by the VHDL file extension field in
the General pane of the HDL Options dialog
box

ModelSim .do file .do

The file is placed in the directory defined by the Target directory option in
the HDL filter pane of the Generate HDL dialog box.

3-95

3 Generating HDL Code for a Filter Design

To specify a test bench name, enter the name in the Name field of the Test
bench types pane, as shown in the following figure.

Note If you enter a string that is a VHDL or Verilog reserved word, the coder
appends the reserved word postfix to the string to form a valid identifier.

Command Line Alternative: Use the generatetb function with the
property TestBenchName to specify a name for your filter’s test bench.

3-96

Customizing the Test Bench

Specifying a Test Bench Type
The Filter Design HDL Coder can generate three types of test benches:

• A VHDL file that you can simulate in a simulator of choice

• A Verilog file that you can simulate in a simulator of choice

• A ModelSim .do file to be used for simulation in the ModelSim environment

Note Due to differences in representation of double-precision data in
VHDL and Verilog, restrictions apply to the types of test benches that are
interoperable. The following table shows valid and invalid test bench type
and HDL combinations when code is generated for a double-precision filter.

Test Bench Type VHDL Verilog

Verilog Invalid Valid

VHDL Valid Invalid

ModelSim .do Not recommended* Valid

*Errors may be reported due to string comparisons.

These restrictions do not apply for fixed-point filters.

3-97

3 Generating HDL Code for a Filter Design

By default, the coder produces a VHDL or Verilog file only, depending on
your language selection. If you want to generate additional test bench files,
select the desired test bench types listed in the Test bench types pane of the
Generate HDL dialog box. In the following figure, the dialog box specifies that
the coder generate VHDL and ModelSim .do test bench files.

If you choose to generate a ModelSim .do file, you have the option of
specifying simulator flags. For example, you might need to specify a specific
compiler version. To specify the flags:

3-98

Customizing the Test Bench

1 Click Test Bench Options in the Test bench types pane of the Generate
HDL dialog box. The Test Bench Options dialog box appears.

2 Type the flags of interest in the Simulator flags field. In the following
figure, the dialog box specifies that ModelSim use the -93 compiler option
for compilation.

3 Click Apply to register the change or OK to register the change and close
the dialog box.

Command Line Alternative: Use the generatetb function’s TbType
parameter to specify the type of test bench files to be generated.

Configuring the Clock
Based on default settings, the Filter Design HDL Coder configures the clock
for a filter test bench such that it

• Forces clock enable input signals to active high (1).

• Forces clock input signals low (0) for a duration of 5 nanoseconds and high
(1) for a duration of 5 nanoseconds.

To change these clock configuration settings:

3-99

3 Generating HDL Code for a Filter Design

1 Click Test Bench Options in the Test bench types pane of the Generate
HDL dialog box. The Test Bench Options dialog box appears.

2 Make the following configuration changes as needed:

If You Want to... Then...

Disable the forcing of clock enable
input signals

Clear Force clock enable.

Disable the forcing of clock input
signals

Clear Force clock.

Reset the number of nanoseconds
during which clock input signals
are to be driven low (0)

Specify a positive integer in the
Clock low time field.

Reset the number of nanoseconds
during which clock input signals
are to be driven high (1)

Specify a positive integer in the
Clock high time field.

The following figure highlights the applicable options.

3 Click Apply to register the change or OK to register the change and close
the dialog box.

3-100

Customizing the Test Bench

Command Line Alternative: Use the generatetb function with
the properties ForceClockEnable, ForceClock, ClockHighTime, and
ClockLowTime to reconfigure the test bench clock.

Configuring Resets
Based on default settings, the Filter Design HDL Coder configures the reset
for a filter test bench such that it

• Forces reset input signals to active high (1). (Test bench reset input levels
are set by the Reset asserted level option).

• Applies a hold time of 2 nanoseconds for reset input signals.

The hold time is the amount of time, after two initial clock cycles, that reset
input signals are to be held past the clock rising edge. The following figure
shows the application of a hold time (thold) for reset input signals when the
signals are forced to active high and active low.

(���'

"	�	�
)����
*���#	
����

�����

�����

"	�	�
)����
*���#	
��$

Note The hold time applies to reset input signals only if the forcing of reset
input signals is enabled.

To change the default reset configuration settings,

3-101

3 Generating HDL Code for a Filter Design

1 Click Test Bench Options in the Test bench types pane in the Generate
HDL dialog box. The Test Bench Options dialog box appears.

2 Make the following configuration changes as needed:

If You Want to... Then...

Disable the forcing of
reset input signals

Clear Force reset.

Change the reset value
to active low (0)

Select Active-low from the Reset asserted
level menu in the Generate HDL dialog box
(see “Setting the Asserted Level for the Reset
Input Signal” on page 3-30)

Reset the hold time Specify a positive integer, representing
nanoseconds, in the Hold time field.

The following figure highlights the applicable options.

3 Click Apply to register the change or OK to register the change and close
the dialog box.

3-102

Customizing the Test Bench

Note The hold time setting also applies to data input signals.

Command Line Alternative: Use the generatetb function with the
properties ForceReset and HoldTime to reconfigure test bench resets.

Setting a Hold Time for Data Input Signals
By default, the Filter Design HDL Coder applies a hold time of 2 nanoseconds
for filter data input signals. The hold time is the amount of time that data
input signals are to be held past the clock rising edge. The following figure
shows the application of a hold time (thold) for data input signals.

(���'

����
)����
�����

To change the hold time setting,

1 Click Test Bench Options in the Test bench types pane of the Generate
HDL dialog box. The Test Bench Options dialog box appears.

3-103

3 Generating HDL Code for a Filter Design

2 Specify a positive integer, representing nanoseconds, in the Hold time
field. In the following figure, the hold time is set to 3 nanoseconds.

3 Click Apply to register the change or OK to register the change and close
the dialog box.

Note The hold time setting also applies to reset input signals, if the forcing
of such signals is enabled.

Command Line Alternative: Use the generatetb function with the
property HoldTime to adjust the hold time setting.

Setting an Error Margin for Optimized Filter Code
Customizations that provide optimizations can generate test bench code that
produces numeric results that differ from those produced by the original
MATLAB filter function. Specifically, these options include

• Optimize for HDL

• Coeff multipliers

3-104

Customizing the Test Bench

• FIR adder style set to Tree

• Add pipeline registers for FIR, asymmetric FIR, and symmetric FIR
filters

If you choose to use any of these options, consider setting an error margin for
the generated test bench to account for differences in numeric results. The
error margin is the number of least significant bits the test bench will ignore
when comparing the results. To set an error margin:

1 Click Test Bench Options in the Test bench types pane of the Generate
HDL dialog box. The Test Bench Options dialog box appears.

2 For fixed-point filters, the Error margin (bits) field is initialized to a
default value of 4 when it is first enabled.

For double-precision floating-point filters, the error margin value is fixed
at 1e-9. This value cannot be changed. The Error margin (bits) field
displays a read-only (disabled) value.

3 Specify an integer in the Error margin (bits) field that indicates an
acceptable minimum number of bits by which the numeric results can
differ before the coder issues a warning. In the following figure, the error
margin is set to 3 bits.

3-105

3 Generating HDL Code for a Filter Design

4 Click Apply to register the change or OK to register the change and close
the dialog box.

Setting Test Bench Stimuli
By default, the Filter Design HDL Coder generates a filter test bench that
includes stimuli appropriate for the given filter. However, you can adjust the
stimuli settings or specify user defined stimuli, if necessary. The following
table lists the types of responses enabled by default.

For Filters... Default Response Types
Include...

FIR, FIRT, symmetric FIR, and
Antisymmetric FIR

Impulse, step, ramp, chirp, and
white noise

All others Step, ramp, and chirp

3-106

Customizing the Test Bench

To modify the stimuli that the coder is to include in a test bench, select one
or more response types listed in the Test bench types pane of the Generate
HDL dialog box. The following figure highlights this pane of the dialog box.

If you select User defined response, you must also specify a MATLAB
expression or function that returns a vector of values to be applied to the
filter. The values specified in the vector are quantized and scaled based on the
filter’s quantization settings.

3-107

3 Generating HDL Code for a Filter Design

Command Line Alternative: Use the generatetb function with the
properties TestBenchStimulus and TestBenchUserStimulus to adjust
stimuli settings.

3-108

Generating the HDL Code

Generating the HDL Code
To initiate HDL code generation for a filter and its test bench, click Generate
on the Generate HDL dialog box. As the Filter Design HDL Coder processes
the code, a sequence of messages similar to the following appears in your
MATLAB Command Window.

Starting VHDL code generation process for filter: MyFIR
Generating filter.vhd file in: D:\work\FIRFilts
Starting generation of MyFIR VHDL entity
Starting generation of MyFIR VHDL architecture
HDL latency is 2 samples
Successful completion of VHDL code generation process for
filter: MyFIR

Starting generation of VHDL Test Bench
Generating input stimulus
Done generating input stimulus; length 3429 samples.
Generating VHDL file into D:\work\FIRFilts
Done generating VHDL test bench.

Note The message text varies based on your customization settings
(filenames and location, test bench type, and so on) and the length of the
input stimulus samples varies from filter to filter. For example, the value
3429 in the preceding message sequence is not fixed; the value is dependent
on the filter under test.

3-109

3 Generating HDL Code for a Filter Design

Generating Scripts for EDA Tools
The Filter Design HDL Coder supports generation of script files for third-party
Electronic Design Automation (EDA) tools. These scripts let you compile and
simulate generated HDL code and/or synthesize generated HDL code.

Using the defaults, you can automatically generate scripts for the following
tools:

• Mentor Graphics ModelSim SE/PE HDL simulator

• The Synplify family of synthesis tools

You can customize both the names and the content of generated script files.
To do this, you must use the generatehdl or generatetb function, and pass
in the appropriate property name/property value arguments as described in
“Customizing Script Names” on page 3-111 and “Customizing Script Code” on
page 3-111.

Enabling and Disabling Script Generation
By default, script generation takes place automatically, as part of the code
and test bench generation process (whether initiated from the command line
or from the Generate HDL dialog box).

The EDAScriptGeneration property controls the generation of script files. By
default, EDAScriptGeneration is set 'on'. To disable script generation, set
EDAScriptGeneration to 'off', as in the following example.

generatehdl(Hd,'EDAScriptGeneration','off')

Default Script Generation
All script files are generated in the target directory.

When HDL code is generated for a filter Hd, the Filter Design HDL Coder
writes the following script files:

• Hd_compile.do: ModelSim compilation script. This script contains
commands to compile the generated filter code, but not to simulate it.

3-110

Generating Scripts for EDA Tools

• Hd_synplify.tcl: Synplify synthesis script

When test bench code is generated for a filter Hd, the Filter Design HDL Coder
writes the following script files:

• Hd_tb_compile.do: ModelSim compilation script. This script contains
commands to compile the generated filter and test bench code.

• Hd_tb_sim.do: ModelSim simulation script. This script contains
commands to run a simulation of the generated filter and test bench code.

Customizing Script Names
When HDL code is generated, script names are generated by appending a
postfix string to the filter name Hd.

When test bench code is generated, script names are generated by appending
a postfix string to the test bench name testbench_tb.

The postfix string depends on the type of script (compilation, simulation,
or synthesis) being generated. The default postfix strings are shown in the
following table. For each type of script, you can define your own postfix using
the associated property.

Script type Property Default Value

Compilation 'HDLCompileFilePostfix' '_compile.do'

Simulation 'HDLSimFilePostfix' '_sim.do'

Synthesis 'HDLSynthFilePostfix' '_synplify.tcl'

In the following example, VHDL code is generated for the filter object myfilt.
A custom postfix string is specified for the compilation script. The name of the
generated compilation script will be myfilt_test_compilation.do.

generatehdl(myfilt, 'HDLCompileFilePostfix', '_test_compilation.do')

Customizing Script Code
A generated EDA script consists of three sections, which are generated and
executed in the following order:

3-111

3 Generating HDL Code for a Filter Design

1 An initialization (Init) phase. The Init phase performs any required
setup actions, such as creating a design library or a project file. Some
arguments to the Init phase are implicit, for example, the top-level entity
or module name.

Properties that apply to the Init phase are identified by the substring
Init in the property name.

2 A command-per-file phase (Cmd). This phase of the script is called
iteratively, once per generated HDL file or once per signal. On each call, a
different file or signal name is passed in.

Properties that apply to the Cmd phase are identified by the substring Cmd
in the property name.

3 A termination phase (Term). This is the final execution phase of the script.
One application of this phase is to execute a simulation of HDL code that
was compiled in the Cmd phase. The Term phase takes no arguments.

Properties that apply to the Term phase are identified by the substring
Term in the property name.

generatehdl and generatetb generate scripts by passing format strings to
the MATLAB fprintf function. Using the property name/property value
pairs summarized in the following table, you can pass in customized format
strings to generatehdl or generatetb.

You can use any legal fprintf formatting characters. For example,
'\n'inserts a newline into the script file.

Some of these format strings can take arguments, such as the top-level entity
or module name, or the names of the VHDL or Verilog files in the design. The
'HDLSimViewWaveCommand' format string takes the top-level signal names
as its argument.

Property Name and Default Description

Name: 'HDLCompileInit'

Default:'vlib work\n'

Format string passed to fprintf to write the Init
section of the compilation script.

3-112

Generating Scripts for EDA Tools

Property Name and Default Description

Name: 'HDLCompileVHDLCmd'

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for VHDL
files. The two arguments are the contents of the
'SimulatorFlags' property and the filename of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name: 'HDLCompileVerilogCmd'

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for Verilog
files. The two arguments are the contents of the
'SimulatorFlags' property and the filename of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name:'HDLCompileTerm'

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.

Name: 'HDLSimInit'

Default:

['onbreak resume\n',...
'onerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.

Name: 'HDLSimCmd'

Default: 'vsim work.%s\n'

Format string passed to fprintf to write the
simulation command. The implicit argument is the
top-level module or entity name.

Name: 'HDLSimViewWaveCmd'

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command. The
top-level module or entity signal names are implicit
arguments.

Name: 'HDLSimTerm'

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script

Name: 'HDLSynthInit'

Default: 'project -new %s.prj\n'

Format string passed to fprintf to write the the Init
section of the synthesis script. The default string is
a synthesis project creation command. The implicit
argument is the top-level module or entity name.

3-113

3 Generating HDL Code for a Filter Design

Property Name and Default Description

Name: 'HDLSynthCmd'

Default: 'add_file %s\n'

Format string passed to fprintf to write the Cmd
section of the synthesis script. The argument is the
filename of the entity or module.

Name: 'HDLSynthTerm'

Default:

['set_option -technology VIRTEX2\n',...

'set_option -part XC2V500\n',...

'set_option -synthesis_onoff_pragma 0\n',...

'set_option -frequency auto\n',...

'project -run synthesis\n']

Format string passed to fprintf to write the Term
section of the synthesis script.

Example
The following example specifies a ModelSim command for the Init phase of a
compilation script for VHDL code generated from the filter myfilt.

generatehdl(myfilt, 'HDLCompileInit', 'vlib mydesignlib\n')

The following code shows the resultant script, myfilt_compile.do.

vlib mydesignlib
vcom myfilt.vhd

Mixed-Language Scripts
The Filter Design HDL Coder allows most combinations of filter and test
bench languages. For example, it is possible to generate VHDL filter code and
a Verilog test bench file, as in the following commands:

generatehdl(myfilt, 'TargetLanguage', 'VHDL')
generatetb(myfilt, 'Verilog')

The following listing shows the generated test bench compilation script for
the above case (myfilt_tb_compile.do). The script contains the correct
language-specific compile command for the generated filter and test bench
code.

3-114

Generating Scripts for EDA Tools

vlib work
vcom myfilt.vhd
vlog myfilt_tb.v

Note that there are two simulation compile Cmd properties
('HDLCompileVHDLCmd', 'HDLCompileVerilogCmd') allowing you to customize
the compilation command for each supported target language.

Note that you can specify generation of both VHDL and Verilog test bench
code, via the Generate HDL dialog box. In this case, the test bench compilation
script will default to the Verilog compilation command.

Note that the generation of ModelSim .do test bench files, which is controlled
by the ModelSim .do file option, is independent from the generation of script
files.

3-115

3 Generating HDL Code for a Filter Design

3-116

4

Testing a Filter Design

This chapter explains how to apply supported test methods for verifying the
HDL code that Filter Design HDL Coder generates for a filter design. Topics
include the following:

Overview of the Test Methods (p. 4-2) Provides an overview of the available
test methods

Testing with an HDL Test Bench
(p. 4-3)

Explains how to test generated filter
HDL code, using generated HDL test
bench code

Testing with a ModelSim Tcl/Tk .do
File (p. 4-12)

Explains how to test generated
filter HDL code, using a generated
ModelSim .do file

4 Testing a Filter Design

Overview of the Test Methods
As explained in “Customizing the Test Bench” on page 3-95, the type of test
bench, configurations for clock and reset signals, error margin, and the test
stimuli will vary depending on your development environment and the
customizations you apply when you generate your design. Depending on the
types of test benches you generate, you can verify your filter design by

• “Testing with an HDL Test Bench” on page 4-3

• “Testing with a ModelSim Tcl/Tk .do File” on page 4-12

4-2

Testing with an HDL Test Bench

Testing with an HDL Test Bench
If you customize the Filter Design HDL Coder to generate VHDL or Verilog
test bench code, you can use a simulator of your choice to verify your filter
design. For example purposes, the following sections explain how to apply
generated HDL test bench code by using ModelSim. In summary, you need to

1 Generate the filter and test bench HDL code.

2 Start the simulator.

3 Compile the generated filter and test bench files.

4 Run the test bench simulation.

Note Due to differences in representation of double-precision data in
VHDL and Verilog, restrictions apply to the types of test benches that are
interoperable. The following table shows valid and invalid test bench type
and HDL combinations when code is generated for a double-precision filter.

Test Bench Type VHDL Verilog

VHDL Valid Invalid

Verilog Invalid Valid

ModelSim .do Not recommended* Valid

*Errors may be reported due to string comparisons.

These restrictions do not apply for fixed-point filters.

Generating the Filter and Test Bench HDL Code
Use the Filter Design HDL Coder GUI or command line interface to generate
the HDL code for your filter design and test bench. As explained in “Specifying
a Test Bench Type” on page 3-97, the GUI generates a VHDL or Verilog test
bench file by default, depending on your language selection. To specify a
language-specific test bench type explicitly, select the VHDL file or Verilog
file option in the Test bench types pane of the Generate HDL dialog box.

4-3

4 Testing a Filter Design

You can specify a number of other test bench customizations, as described in
“Customizing the Test Bench” on page 3-95.

The following figure shows settings for generating the filter and test bench
files MyFilter.vhd, MyFilter_tb.vhd, and MyFilter_tb.v. The dialog box
also specifies that the generated files are to be placed in the default target
directory hdlsrc under the current working directory.

After you click Generate, the Filter Design HDL Coder displays the following
messages in the MATLAB Command Window:

4-4

Testing with an HDL Test Bench

Starting VHDL code generation process for filter: MyFilter

Generating: D:\work\MyPlayArea\hdlsrc\MyFilter.vhd

Starting generation of MyFilter VHDL entity

Starting generation of MyFilter VHDL architecture

HDL latency is 2 samples

Successful completion of VHDL code generation process for filter:

MyFilter

Starting generation of VHDL Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.

Generating VHDL testbench: D:\work\MyPlayArea\hdlsrc\MyFilter_tb.vhd

Please wait

Done generating VHDL test bench.

Starting generation of Verilog Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.

Generating Verilog testbench : D:\work\MyPlayArea\hdlsrc\MyFilter_tb.v

Please wait

Done generating Verilog test bench.

Note The length of the input stimulus samples varies from filter to filter. For
example, the value 3429 in the preceding message sequence is not fixed; the
value is dependent on the filter under test.

If you use the command line interface, you must

• Invoke the functions generatehdl and generatetb, in that order. The
order is important because generatetb takes into account additional
latency or numeric differences introduced into the filter’s HDL code that
results from the following property settings.

4-5

4 Testing a Filter Design

Property... Set to... Can Affect...

'AddInputRegister'
or
'AddOutputRegister'

'on' Latency

'FIRAdderStyle' 'pipeline' Numeric
computations and
latency

'FIRAdderStyle' 'tree' Numeric
computations

'OptimizeForHDL' 'off' Numeric
computations

'CastBeforeSum' 'on' Numeric
computations

'CoeffMultipliers' 'csd' or
'factored-csd'

Numeric
computations

• Specify 'VHDL' or 'Verilog' for the TbType parameter. For
double-precision filters, you must specify the type that matches the target
language specified for your filter code.

• Make sure the property settings specified in the invocation of generatetb
match those of the corresponding invocation of generatehdl. You can do
this in one of two ways:

- Omit explicit property settings from the generatetb invocation. This
function automatically inherits the property settings established in the
generatehdl invocation.

- Take care to specify the same property settings specified in the
generatehdl invocation.

You might also want to consider using the function generatetbstimulus to
return the test bench stimulus to the MATLAB Command Window.

For details on the property name and property value pairs that you can
specify with the generatehdl and generatetb functions for customizing the
output, see Chapter 5, “Properties — By Category”.

4-6

Testing with an HDL Test Bench

Starting the Simulator
After you generate your filter and test bench HDL files, start your simulator.
When you start ModelSim, a screen display similar to the following appears:

After starting the simulator, set the current directory to the directory that
contains your generated HDL files.

Compiling the Generated Filter and Test Bench Files
Using your choice HDL compiler, compile the generated filter and test bench
HDL files. Depending on the language of the generated test bench and the
simulator you are using, you might need to complete some precompilation
setup. For example, in ModelSim, you might choose to create a design library
to store compiled VHDL entities, packages, architectures, and configurations.

The following ModelSim command sequence changes the current directory to
hdlsrc, creates the design library work, and compiles VHDL filter and filter
test bench code. The vlib command creates the design library work and the
vcom commands initiate the compilations.

cd hdlsrc
vlib work
vcom MyFilter.vhd
vcom MyFilter_tb.vhd

4-7

4 Testing a Filter Design

Note For VHDL test bench code that has floating-point (double) realizations,
use a compiler that supports VHDL-93 or VHDL-02 (for example, in
ModelSim, specify the vcom command with the -93 option). Do not compile the
generated test bench code with a VHDL-87 compiler. VHDL test benches using
double- precision data types do not support VHDL-87, because test bench code
uses the image attribute, which is available only in VHDL-93 or higher.

The following screen display shows this command sequence and informational
messages displayed during compilation.

Running the Test Bench Simulation
Once your generated HDL files are compiled, load and run the test bench. The
procedure for doing this varies depending on the simulator you are using. In

4-8

Testing with an HDL Test Bench

ModelSim, you load the test bench for simulation with the vsim command.
For example:

vsim work.MyFilter_tb

The following ModelSim display shows the results of loading
work.MyFilter_tb with the vsim command.

Once the design is loaded into the simulator, consider opening a display
window for monitoring the simulation as the test bench runs. For example, in
ModelSim, you might use the add wave * command to open a wave window
to view the results of the simulation as HDL waveforms.

To start running the simulation, issue the appropriate simulator command.
For example, in ModelSim, you can start a simulation with the run -all
command.

4-9

4 Testing a Filter Design

The following ModelSim display shows the add wave * command being used
to open a wave window and the -run all command being used to start a
simulation.

As your test bench simulation runs, watch for error messages. If any error
messages appear, you must interpret them as they pertain to your filter design
and the HDL customizations you applied with the Filter Design HDL Coder.
For example, a number of HDL customization options allow you to specify
settings that can produce numeric results that differ from those produced by
the original MATLAB filter function. For HDL test benches, the Filter Design
HDL Coder compares the results and if they differ, excluding the specified
error margin, returns an error message similar to the following:

Error in filter test: Expected xxxxxxxx Actual xxxxxxxx

You must determine whether the actual results are expected based on the
customizations you specified when generating the filter HDL code.

4-10

Testing with an HDL Test Bench

Note The failure message that appears in the preceding display is not
flagging an error. If the message includes the string Test Complete, the
test bench has successfully run to completion. The Failure part of the
message is tied to the mechanism the Filter Design HDL Coder uses to end
the simulation.

The following wave window shows the simulation results as HDL waveforms.

4-11

4 Testing a Filter Design

Testing with a ModelSim Tcl/Tk .do File
If you customize the Filter Design HDL Coder to generate a ModelSim Tcl/Tk
.do file test bench, you must use ModelSim to test and verify your filter
design. When you choose this test bench method, you need to

1 Generate the filter and test bench HDL code.

2 Start ModelSim.

3 Compile the generated filter file.

4 Execute the ModelSim DO file.

Generating the Filter HDL Code and Test Bench .do
File
Use the Filter Design HDL Coder GUI or command line interface to generate
the HDL code for your filter design and test bench. The GUI generates a
ModelSim .do file test bench if you select the ModelSim .do file option in
the Test bench types pane of the Generate HDL dialog box. You can specify
a number of other test bench customizations, as described in “Customizing
the Test Bench” on page 3-95.

4-12

Testing with a ModelSim Tcl/Tk .do File

The following figure shows settings for generating the filter and test bench
files MyFilter.vhd and MyFilter_tb.do. The dialog box also specifies that
the generated files are to be placed in the default target directory hdlsrc
under the current working directory.

After you click Generate, Filter Design HDL Coder displays the following
messages in the MATLAB Command Window:

Starting VHDL code generation process for filter: MyFilter

Generating: D:\work\MyPlayArea\hdlsrc\MyFilter.vhd

4-13

4 Testing a Filter Design

Starting generation of MyFilter VHDL entity

Starting generation of MyFilter VHDL architecture

HDL latency is 2 samples

Successful completion of VHDL code generation process for filter: MyFilter

Starting generation of ModelSim .do file Test Bench

Generating input stimulus

Done generating input stimulus; length 3429 samples.

Generating ModelSim .do file MyFilter_tb in: hdlsrc

Done generating ModelSim .do file test bench.

Note The length of the input stimulus samples varies from filter to filter. For
example, the value 3429 in the preceding message sequence is not fixed; the
value is dependent on the filter under test.

If you use the command line interface, you must

• Invoke the functions generatehdl and generatetb, in that order. The
order is important because generatetb takes into account latency or
numeric differences introduced into the filter’s HDL code that results from
the following property settings.

Property... Set to... Can Affect...

'AddInputRegister'
or
'AddOutputRegister'

'on' Latency

'FIRAdderStyle' 'pipeline' Numeric
computations and
latency

'FIRAdderStyle' 'tree' Numeric
computations

'OptimizeForHDL' 'off' Numeric
computations

4-14

Testing with a ModelSim Tcl/Tk .do File

Property... Set to... Can Affect...

'CastBeforeSum' 'on' Numeric
computations

'CoeffMultipliers' 'csd' or
'factored-csd'

Numeric
computations

• Specify 'ModelSim' for the TbType parameter.

• Make sure the property settings specified in the invocation of generatetb
match those of the corresponding invocation of generatehdl. You can do
this in one of two ways:

- Omit explicit property settings from the generatetb invocation. This
function automatically inherits the property settings established in the
generatehdl invocation.

- Take care to specify the same property settings specified in the
generatehdl invocation.

You might also want to consider using the function generatetbstimulus to
return the test bench stimulus to the MATLAB Command Window.

For details on the property name and property value pairs that you can
specify with the generatehdl and generatetb functions for customizing the
output, see Chapter 5, “Properties — By Category”.

4-15

4 Testing a Filter Design

Starting ModelSim
After you generate your filter and test bench HDL files, start ModelSim. A
screen display similar to the following appears.

After starting the simulator, set the current directory to the directory that
contains your generated filter and test bench files.

Compiling the Generated Filter File
Using your choice HDL compiler, compile the generated filter HDL file. The
test bench .do file looks for your compiled HDL elements in a design library
named work. The design library stores the compiled HDL components. If the
design library work does not exist, you can create it by setting the current
directory to hdlsrc and then issuing the command vlib work. Once the
library exists, you can use the ModelSim compiler to compile the filter’s HDL
file.

The following ModelSim command sequence changes the current directory to
hdlsrc, creates the design library work, and compiles filter VHDL code.

cd hdlsrc
vlib work
vcom MyFilter.vhd

4-16

Testing with a ModelSim Tcl/Tk .do File

Note For VHDL test bench code that has floating-point (double) realizations,
use a compiler that supports VHDL-93 or VHDL-02 (for example, in
ModelSim, specify the vcom command with the -93 option). Do not compile the
generated test bench code with a VHDL-87 compiler. VHDL test benches using
double- precision data types do not support VHDL-87, because test bench code
uses the image attribute, which is available only in VHDL-93 or higher.

The following screen display shows this command sequence and informational
messages displayed during compilation.

Execute the ModelSim .do File
Once your filter’s HDL file is compiled, execute the generated test bench .do
file. The .do file

1 Loads the compiled filter for simulation.

2 Opens a wave window and populates it with filter signals.

3 Applies stimulus to filter signals with force commands.

4-17

4 Testing a Filter Design

4 Compares filter output to expected results.

You can execute the .do file by using the ModelSim do command or the Tcl
source command. The following ModelSim display shows how to use the
do command.

4-18

Testing with a ModelSim Tcl/Tk .do File

The test bench .do script displays the simulation results in a wave window
that appears as follows.

Note The Filter Design HDL Coder adjusts the wave form such that it is
appropriate for the specified filter output settings.

As your test bench simulation runs, watch for error messages. If any error
messages appear, you must interpret them as they pertain to your filter
design and the HDL customizations you applied with the Filter Design HDL
Coder. For example, a number of HDL customization options allow you to
specify settings that can produce numeric results that differ from those
produced by the original MATLAB filter function. The Filter Design HDL
Coder compares the results and, if they differ, returns an error message
similar to the following:

Error in filter test: Expected xxxxxxxx Actual xxxxxxxx

4-19

4 Testing a Filter Design

Note You cannot specify an error margin for ModelSim .do file test benches
like you can for HDL test benches. The Filter Design HDL Coder returns an
error if the expected and actual values do not match exactly.

You must determine whether the actual results are expected based on the
customizations you specified when generating the filter HDL code.

4-20

5

Properties — By Category

Language Selection Properties
(p. 5-2)

Lists properties for selecting
language of generated HDL code

File Naming and Location Properties
(p. 5-2)

Lists properties that name and
specify location of generated files

Reset Properties (p. 5-2) Lists reset properties

Header Comment and General
Naming Properties (p. 5-3)

Lists header comment and general
naming properties

Port Properties (p. 5-3) Lists port properties

Advanced Coding Properties (p. 5-4) Lists advanced HDL coding
properties

Optimization Properties (p. 5-6) Lists optimization properties

Test Bench Properties (p. 5-6) Lists test bench properties

Script Generation Properties (p. 5-7) Lists properties for customizing
generated scripts for EDA tools

5 Properties — By Category

Language Selection Properties
TargetLanguage Specify HDL language to use for

generated filter code

File Naming and Location Properties
Name Specify file name for generated HDL

code and name for filter’s VHDL
entity or Verilog module

TargetDirectory Identify directory into which
generated output files are written

VerilogFileExtension Specify file type extension for
generated Verilog files

VHDLFileExtension Specify file type extension for
generated VHDL files

Reset Properties
ResetAssertedLevel Specify asserted (active) level of

reset input signal

ResetType Specify whether to use asynchronous
or synchronous reset style when
generating HDL code for registers

5-2

Header Comment and General Naming Properties

Header Comment and General Naming Properties
ClockProcessPostfix Specify string to append to HDL

clock process names

CoeffPrefix Specify prefix (string) for filter
coefficient names

EntityConflictPostfix Specify string to append to duplicate
VHDL entity or Verilog module
names

PackagePostfix Specify a string to append to the
specified filter name to form the
name of a VHDL package file

ReservedWordPostfix Specify string to append to value
names, postfix values, or labels that
are VHDL or Verilog reserved words

SplitArchFilePostfix Specify string to append to specified
name to form name of file containing
filter’s VHDL architecture

SplitEntityArch Specify whether generated VHDL
entity and architecture code is
written to single VHDL file or to
separate files

SplitEntityFilePostfix Specify string to append to specified
filter name to form name of file that
contains filter’s VHDL entity

Port Properties
AddInputRegister Generate extra register in HDL code

for filter input

AddOutputRegister Generate extra register in HDL code
for filter output

5-3

5 Properties — By Category

ClockEnableInputPort Name HDL port for filter’s clock
enable input signals

ClockEnableOutputPort For multirate filters (with single
clock), specify name of clock enable
output port

ClockInputs For multirate filters, specify
generation of single or multiple clock
inputs

InputPort Name HDL port for filter’s input
signals

InputType Specify HDL data type for filter’s
input port

OutputPort Name HDL port for filter’s output
signals

OutputType Specify HDL data type for filter’s
output port

ResetInputPort Name HDL port for filter’s reset
input signals

Advanced Coding Properties
BlockGenerateLabel Specify string to append to block

labels used for HDL GENERATE
statements

CastBeforeSum Enable or disable type casting
of input values for addition and
subtraction operations

DALUTPartition Specify number and size of LUT
partitions for distributed arithmetic
architecture

5-4

Advanced Coding Properties

DARadix Specify number of bits processed
simultaneously in distributed
arithmetic architecture

InlineConfigurations Specify whether generated VHDL
code includes inline configurations

InstanceGenerateLabel Specify string to append to instance
section labels in VHDL GENERATE
statements

LoopUnrolling Specify whether VHDL FOR and
GENERATE loops are unrolled and
omitted from generated VHDL code

OutputGenerateLabel Specify string that labels output
assignment block for VHDL
GENERATE statements

SafeZeroConcat Specify syntax used in generated
VHDL code for concatenated zeros

ScaleWarnBits Specify threshold for generation of
warning for scale values that may
cause quantization noise

UseAggregatesForConst Specify whether all constants are
represented by aggregates, including
constants that are less than 32 bits

UserComment Specify string added as comment
line in header of generated filter and
test bench files

UseRisingEdge Specify VHDL coding style used
to check for rising edges when
operating on registers

UseVerilogTimescale Allow or exclude use of compiler
`timescale directives in generated
Verilog code

5-5

5 Properties — By Category

Optimization Properties
AddPipelineRegisters Optimize clock rate used by filter

code by adding pipeline registers

CoeffMultipliers Specify technique used for processing
coefficient multiplier operations

FIRAdderStyle Specify final summation technique
used for FIR filters

OptimizeForHDL Specify whether generated HDL code
is optimized for specific performance
or space requirements

ReuseAccum Enable accumulator reuse,
generating cascade-serial
architecture for FIR filters

SerialPartition Specify number and size of partitions
generated for serial FIR filter
architectures

Test Bench Properties
ClockHighTime Specify period, in nanoseconds,

during which test bench drives clock
input signals high (1)

ClockInputPort Name HDL port for filter’s clock
input signals

ClockLowTime Specify period, in nanoseconds,
during which test bench drives clock
input signals low (0)

ErrorMargin Specify error margin for HDL
language-based test benches

ForceClock Specify whether test bench forces
clock input signals

5-6

Script Generation Properties

ForceClockEnable Specify whether test bench forces
clock enable input signals

ForceReset Specify whether test bench forces
reset input signals

HoldTime Specify hold time for filter data input
signals and forced reset input signals

SimulatorFlags Specify simulator flags applied to
generated test bench

TestBenchName Name VHDL test bench entity or
Verilog module and file that contains
test bench code

TestBenchStimulus Specify input stimuli that test bench
applies to filter

TestBenchUserStimulus Specify user-defined MATLAB
function that returns vector of
values that test bench applies to
filter

Script Generation Properties
EDAScriptGeneration Enable or disable generation of

script files for third-party tools

HDLCompileInit Specify string written to
initialization section of compilation
script

HDLCompileTerm Specify string written to termination
section of compilation script

HDLCompileVerilogCmd Specify command string written to
compilation script for Verilog files

HDLCompileVHDLCmd Specify command string written to
compilation script for VHDL files

5-7

5 Properties — By Category

HDLSimCmd Specify simulation command written
to simulation script

HDLSimInit Specify string written to
initialization section of simulation
script

HDLSimTerm Specify string written to termination
section of simulation script

HDLSimViewWaveCmd Specify waveform viewing command
written to simulation script

HDLSynthCmd Specify command written to
synthesis script

HDLSynthInit Specify string written to
initialization section of synthesis
script

HDLSynthTerm Specify string written to termination
section of synthesis script

5-8

6

Properties — Alphabetical
List

AddInputRegister

Purpose Generate extra register in HDL code for filter input

Settings 'on' (default)

Add an extra input register to the filter’s generated HDL code.

The code declares a signal named input_register and includes a
PROCESS block similar to the block below. Names and meanings of the
timing parameters (clock, clock enable, and reset) and the coding style
that checks for clock events may vary depending on other property
settings.

Input_Register_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
input_register <= (OTHERS => '0');

ELSIF clk'event AND clk = '1' THEN
IF clk_enable = '1' THEN

input_register <= input_typeconvert;
END IF;

END IF;
END PROCESS Input_Register_Process ;

'off'

Omit the extra input register from the filter’s generated HDL code.

Consider omitting the extra register if you are incorporating the filter
into HDL code that already has a source for driving the filter. You might
also consider omitting the extra register if the latency it introduces to
the filter is not tolerable.

See Also AddOutputRegister

6-2

AddOutputRegister

Purpose Generate extra register in HDL code for filter output

Settings 'on' (default)

Add an extra output register to the filter’s generated HDL code.

The code declares a signal named output_register and includes a
PROCESS block similar to the block below. Names and meanings of the
timing parameters (clock, clock enable, and reset) and the coding style
that checks for clock events may vary depending on other property
settings.

Output_Register_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
output_register <= (OTHERS => '0');

ELSIF clk'event AND clk = '1' THEN
IF clk_enable = '1' THEN

output_register <= output_typeconvert;
END IF;

END IF;
END PROCESS Output_Register_Process ;

'off'

Omit the extra output register from the filter’s generated HDL code.

Consider omitting the extra register if you are incorporating the filter
into HDL code that has its own input register. You might also consider
omitting the extra register if the latency it introduces to the filter is
not tolerable.

See Also AddInputRegister

6-3

AddPipelineRegisters

Purpose Optimize clock rate used by filter code by adding pipeline registers

Settings 'on'

Add a pipeline register between stages of computation in a filter.
For example, for a sixth-order IIR filter, the coder adds two pipeline
registers, one between the first and second sections and one between
the second and third sections. Although the registers add to the overall
filter latency, they provide significant improvements to the clock rate.

For... A Pipeline Register Is Added
Between...

FIR Transposed filters Coefficient multipliers and adders

FIR, Asymmetric FIR, and
Symmetric FIR filters

Levels of a tree-based final adder

IIR filters Sections

'off' (default)

Suppress the use of pipeline registers.

Usage
Notes

For FIR filters, the use of pipeline registers optimizes filter final
summation. For details, see “Optimizing Final Summation for FIR
Filters” on page 3-60 .

Note The use of pipeline registers in FIR, antisymmetric FIR, and
symmetric FIR filters can produce numeric results that differ from those
produced by the original MATLAB filter function because they force the
tree mode of final summation. In such cases, consider adjusting the
test bench error margin.

See Also CoeffMultipliers, FIRAdderStyle, OptimizeForHDL

6-4

BlockGenerateLabel

Purpose Specify string to append to block labels used for HDL GENERATE
statements

Settings 'string'

Specify a postfix string to append to block labels used for HDL GENERATE
statements. The default string is _gen.

See Also InstanceGenerateLabel, OutputGenerateLabel

6-5

CastBeforeSum

Purpose Enable or disable type casting of input values for addition and
subtraction operations

Settings 'on'(default)

Type cast input values in addition and subtraction operations to
the result type before operating on the values. This is the default.
This setting produces numeric results that are typical of Simulink®

fixed-point results produced by DSP processors.

Note The FDATool sets this option by default. However, the Filter
Design HDL Coder default behavior overrides the FDATool setting and
disables type casting.

'off'

Preserve the types of input values during addition and subtraction
operations and then convert the result to the result type. This is the
MATLAB mode of operation.

See Also InlineConfigurations, LoopUnrolling, SafeZeroConcat,
ScaleWarnBits, UseAggregatesForConst, UseRisingEdge,
UseVerilogTimescale

6-6

ClockEnableInputPort

Purpose Name HDL port for filter’s clock enable input signals

Settings 'string'

The default name for the filter’s clock enable input port is clk_enable.

For example, if you specify the string 'filter_clock_enable' for filter
entity Hq, the generated entity declaration might look as follows:

ENTITY Hd IS

PORT(clk : IN std_logic;

filter_clock_enable : IN std_logic;

reset : IN std_logic;

filter_in : IN std_logic_vector (15 DOWNTO 0);

filter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END Hd;

If you specify a string that is a VHDL or Verilog reserved word, a
reserved word postfix string is appended to form a valid VHDL or
Verilog identifier. For example, if you specify the reserved word
signal, the resulting name string would be signal_rsvd. See
ReservedWordPostfix for more information.

Usage
Notes

The clock enable signal is asserted active high (1). Thus, the input value
must be high for the filter entity’s registers to be updated.

See Also ClockInputPort, InputPort, InputType, OutputPort, OutputType,
ResetInputPort

6-7

ClockEnableOutputPort

Purpose For multirate filters (with single clock), specify name of clock enable
output port

Settings 'string'

The default name for the generated clock enable output port isce_out.

For multirate filters, a clock enable output is generated when you select
Single from the Clock inputs menu in the Generate HDL dialog. In
this case only, the Clock enable output port option is enabled.

Usage
Notes

For multirate filters, a clock enable output is generated when Single is
selected from the Clock inputs menu in the Generate HDL dialog. In
this case only, the Clock enable output port option is enabled.

See Also ClockInputs

6-8

ClockHighTime

Purpose Specify period, in nanoseconds, during which test bench drives clock
input signals high (1)

Settings ns

The default is 5.

Usage
Notes

The Filter Design HDL Coder ignores this property if ForceClock
is set to 'off'.

See Also ClockLowTime, ForceClock, ForceClockEnable, ForceReset, HoldTime

6-9

ClockInputPort

Purpose Name HDL port for filter’s clock input signals

Settings 'string'

The default clock input port name is clk.

For example, if you specify the string 'filter_clock' for filter entity
Hd, the generated entity declaration might look as follows:

ENTITY Hd IS

PORT(filter_clock : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

filter_in : IN std_logic_vector (15 DOWNTO 0); -- sfix16_En15

filter_out : OUT std_logic_vector (15 DOWNTO 0); -- sfix16_En15

);

ENDHd;

If you specify a string that is a VHDL reserved word, a reserved word
postfix string is appended to form a valid VHDL identifier. For example,
if you specify the reserved word signal, the resulting name string would
be signal_rsvd. See ReservedWordPostfix in for more information.

See Also ClockEnableInputPort, InputPort, InputType, OutputPort,
OutputType, ResetInputPort

6-10

ClockInputs

Purpose For multirate filters, specify generation of single or multiple clock inputs

Settings 'Single' (default)

Generate a single clock input for a multirate filter. When this option
is selected, the ENTITY declaration for the filter defines a single clock
input with an associated clock enable input and clock enable output.
The generated code maintains a counter that controls the timing of
data transfers to the filter output (for decimation filters) or input (for
interpolation filters). The counter is, in effect, a secondary clock whose
rate is determined by the filter’s decimation or interpolation factor.

'Multiple'

Generate multiple clock inputs for a multirate filter. When this option
is selected, the ENTITY declaration for the filter defines separate clock
inputs (each with an associated clock enable input) for each rate of a
multirate filter. (For currently supported multirate filters, there are
two such rates).

Usage
Notes

The Clock inputs menu is enabled only when a multirate filter (of
one of the types supported for code generation) has been designed in
fdatool.

The generated code assumes that the clocks are driven at the
appropriate rates. You are responsible for ensuring that the clocks run
at the correct relative rates for the filter’s decimation or interpolation
factor. To see an example, generate test bench code for your multirate
filter and examine the clk_gen processes for each clock.

See Also ClockEnableOutputPort

6-11

ClockLowTime

Purpose Specify period, in nanoseconds, during which test bench drives clock
input signals low (0)

Settings ns

The default is 5.

Usage
Notes

The Filter Design HDL Coder ignores this property if ForceClock
is set to 'off'.

See Also ClockHighTime, ForceClock, ForceClockEnable, ForceReset,
HoldTime,

6-12

ClockProcessPostfix

Purpose Specify string to append to HDL clock process names

Settings 'string'

The default postfix is _process.

The Filter Design HDL Coder uses process blocks to modify the content
of a filter’s registers. The label for each of these blocks is derived from a
register name and the postfix _process. For example, the coder derives
the label delay_pipeline_process in the following block declaration
from the register name delay_pipeline and the default postfix string
_process:

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

.

.

.

See Also PackagePostfix, ReservedWordPostfix

6-13

CoeffMultipliers

Purpose Specify technique used for processing coefficient multiplier operations

Settings 'multiplier' (default)

Retain multiplier operations in the generated HDL code.

'csd'

This option uses canonic signed digit (CSD) techniques, which replace
multiplier operations with shift and add operations. CSD techniques
minimize the number of addition operations required for constant
multiplication by representing binary numbers with a minimum count
of nonzero digits. This decreases the area used by the filter while
maintaining or increasing clock speed.

'factored-csd'

This option uses factored CSD techniques, which replace multiplier
operations with shift and add operations on prime factors of the
coefficients. This option lets you achieve a greater filter area reduction
than CSD, at the cost of decreasing clock speed.

Note If the CSD or Factored CSD optimizations are selected, the
generated test bench can produce numeric results that differ from
those produced by the original MATLAB filter function if rounding or
saturation occurs.

See “Optimizing Coefficient Multipliers” on page 3-59 for more
information.

See Also AddPipelineRegisters, FIRAdderStyle, OptimizeForHDL

6-14

CoeffPrefix

Purpose Specify prefix (string) for filter coefficient names

Settings 'string'

The default prefix for filter coefficient names is coeff.

For... The Prefix Is Concatenated with...

FIR filters Each coefficient number, starting with 1. For
example, the default for the first coefficient
would be coeff1.

IIR filters An underscore (_) and an a or b coefficient
name (for example, _a2, _b1, or _b2) followed
by the string _sectionn, where n is the
section number. For example, the default for
the first numerator coefficient of the third
section is coeff_b1_section3.

For example:

ARCHITECTURE rtl OF Hd IS

-- Type Definitions

TYPE delay_pipeline_type IS ARRAY (NATURAL range <>)

OF signed(15 DOWNTO 0); -- sfix16_En15

CONSTANT coeff1 : signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_En15

CONSTANT coeff2 : signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15

CONSTANT coeff3 : signed(15 DOWNTO 0) := to_signed(-81, 16); -- sfix16_En15

CONSTANT coeff4 : signed(15 DOWNTO 0) := to_signed(120, 16); -- sfix16_En15

.

.

.

If you specify a string that is a VHDL reserved word, a reserved word
postfix string is appended to form a valid VHDL identifier. For example,
if you specify the reserved word signal, the resulting name string would
be signal_rsvd. See ReservedWordPostfix for more information.

6-15

CoeffPrefix

See Also ClockProcessPostfix, EntityConflictPostfix, PackagePostfix,
ReservedWordPostfix

6-16

DALUTPartition

Purpose Specify number and size of LUT partitions for distributed arithmetic
architecture

Settings [p1 p2...pN]

Where [p1 p2 p3...pN] is a vector of N integers, divides the LUT used
in distributed arithmetic (DA) into N partitions. Each vector element
specifies the size of a partition. The maximum size for an individual
partition is 12. The sum of all vector elements must be equal to the
filter length. The filter length is calculated differently depending on the
filter type (see “Distributed Arithmetic for FIR Filters” on page 3-71).

Usage
Notes

To enable generation of DA code for your filter design without LUT
partitioning, specify a vector of one element, whose value is equal to the
filter length, as in the following example:

b = [0.0349 0.4302 0.4302 0.4302 0.0349];
Hd = dfilt.dffir(b);
Hd.arithmetic = 'fixed';
generatehdl (Hd, 'DALUTPartition', 5);

See “Distributed Arithmetic for FIR Filters” on page 3-71 for a complete
description of DA.

See Also DARadix

6-17

DARadix

Purpose Specify number of bits processed simultaneously in distributed
arithmetic architecture

Settings N

N specifies the number of bits processed simultaneously in a distributed
arithmetic (DA) architecture. N must be

• A nonzero positive integer that is a power of two

• Such that mod(W, log2(N)) = 0 where W is the input word size of
the filter.

The default value for N is 2, specifying processing of one bit at a time, or
fully serial DA. The maximum value for N is 2^W, where W is the input
word size of the filter. This maximum specifies fully parallel DA. Values
of N between these extrema specify partly serial DA.

Usage
Notes

The DARadix property lets you introduce a degree of parallelism into
the operation of DA, improving performance at the expense of area. See
“Distributed Arithmetic for FIR Filters” on page 3-71 for a complete
description of DA.

See Also DALUTPartition

6-18

EDAScriptGeneration

Purpose Enable or disable generation of script files for third-party tools

Settings 'on' (default)

Enable generation of script files.

'off'

Disable generation of script files.

See Also “Generating Scripts for EDA Tools” on page 3-110

6-19

EntityConflictPostfix

Purpose Specify string to append to duplicate VHDL entity or Verilog module
names

Settings 'string'

The specified postfix resolves duplicate VHDL entity or Verilog module
names. The default string is _entity.

For example, if the Filter Design HDL Coder detects two entities with
the name MyFilt, the coder names the first entity MyFilt and the
second instance MyFilt_entity.

See Also ClockProcessPostfix, CoeffPrefix, PackagePostfix,
ReservedWordPostfix

6-20

ErrorMargin

Purpose Specify error margin for HDL language-based test benches

Settings n

Some HDL optimizations can generate test bench code that produces
numeric results that differ from those produced by the original
MATLAB filter function. By specifying an error margin, you can specify
an acceptable minimum number of bits by which the numeric results
can differ before the coder issues a warning.

Specify the error margin as an integer number of bits.

Usage
Notes

Optimizations that can generate test bench code that produces numeric
results that differ from those produced by the original MATLAB filter
function include

• CastBeforeSum (qfilts only)

• OptimizeForHDL

• CoeffMultipliers

• FIRAdderStyle ('Tree')

• AddPipelineRegisters (for FIR, Asymmetric FIR, and Symmetric
FIR filters)

The error margin is the number of least significant bits a Verilog or
VHDL language-based test bench can ignore when comparing the
numeric results before generating a warning.

For fixed-point filters, the Error margin (bits) value is initialized to
a default value of 4.

For double precision floating-point filters, the Error margin (bits)
value is fixed at 1e-9. This value is displayed with the field disabled
to indicate that the value cannot be changed.

See Also AddPipelineRegisters, CastBeforeSum, CoeffMultipliers,
FIRAdderStyle, OptimizeForHDL

6-21

FIRAdderStyle

Purpose Specify final summation technique used for FIR filters

Settings 'linear' (default)

Apply linear adder summation. This technique is discussed in most
DSP text books.

'tree'

Increase clock speed while maintaining the area used. This option
creates a final adder that performs pair-wise addition on successive
products that execute in parallel, rather than sequentially.

Usage
Notes

If you are generating HDL code for a FIR filter, consider optimizing the
final summation technique by applying tree or pipeline final summation
techniques. Pipeline mode produces results similar to tree mode with
the addition of a stage of pipeline registers after processing each level
of the tree.

For information on applying pipeline mode, see AddPipelineRegisters.

Consider the following tradeoffs when selecting the final summation
technique for your filter:

• The number of adder operations for linear and tree mode are the
same, but the timing for tree mode might be significantly better due
to summations occurring in parallel.

• Pipeline mode optimizes the clock rate, but increases the filter
latency by the base 2 logarithm of the number of products to be
added, rounded up to the nearest integer.

• Linear mode ensures numeric accuracy in comparison to the original
MATLAB filter function. Tree and pipeline modes can produce
numeric results that differ from those produced by the MATLAB
filter function.

See Also AddPipelineRegisters, CoeffMultipliers, OptimizeForHDL

6-22

ForceClock

Purpose Specify whether test bench forces clock input signals

Settings 'on' (default)

Specify that the test bench forces the clock input signals. When this
option is set, the clock high and low time settings control the clock
waveform.

'off'

Specify that a user-defined external source forces the clock input signals.

See Also ClockHighTime, ClockLowTime, ForceClockEnable, ForceReset,
HoldTime,

6-23

ForceClockEnable

Purpose Specify whether test bench forces clock enable input signals

Settings 'on' (default)

Specify that the test bench forces the clock enable input signals to
active high (1) or active low (0), depending on the setting of the clock
enable input value.

'off'

Specify that a user-defined external source forces the clock enable input
signals.

See Also ClockHighTime, ClockLowTime, ForceClock, ForceReset, HoldTime,

6-24

ForceReset

Purpose Specify whether test bench forces reset input signals

Settings 'on' (default)

Specify that the test bench forces the reset input signals. If you enable
this option, you can also specify a hold time to control the timing of
a reset.

'off'

Specify that a user-defined external source forces the reset input signals.

See Also ClockHighTime, ClockLowTime, ForceClock, ForceClockEnable,
HoldTime,

6-25

HDLCompileInit

Purpose Specify string written to initialization section of compilation script

Settings 'string'

The default string is 'vlib work\n'.

See Also “Generating Scripts for EDA Tools” on page 3-110

6-26

HDLCompileTerm

Purpose Specify string written to termination section of compilation script

Settings 'string'

The default is the null string ('').

See Also “Generating Scripts for EDA Tools” on page 3-110

6-27

HDLCompileVerilogCmd

Purpose Specify command string written to compilation script for Verilog files

Settings 'string'

The default string is 'vlog %s %s\n'.

The two arguments are the contents of the 'SimulatorFlags' property
and the file name of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

See Also “Generating Scripts for EDA Tools” on page 3-110

6-28

HDLCompileVHDLCmd

Purpose Specify command string written to compilation script for VHDL files

Settings 'string'

The default string is 'vcom %s %s\n'.

The two arguments are the contents of the 'SimulatorFlags' property
and the file name of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

See Also “Generating Scripts for EDA Tools” on page 3-110

6-29

HDLSimCmd

Purpose Specify simulation command written to simulation script

Settings 'string'

The default string is'vsim work.%s\n'.

The implicit argument is the top-level module or entity name.

See Also “Generating Scripts for EDA Tools” on page 3-110

6-30

HDLSimInit

Purpose Specify string written to initialization section of simulation script

Settings 'string'

The default string is

['onbreak resume\n',...
'onerror resume\n']

See Also “Generating Scripts for EDA Tools” on page 3-110

6-31

HDLSimTerm

Purpose Specify string written to termination section of simulation script

Settings 'string'

The default string is 'run -all\n'

See Also “Generating Scripts for EDA Tools” on page 3-110

6-32

HDLSynthCmd

Purpose Specify command written to synthesis script

Settings 'string'

The default string is 'add_file %s\n'

The implicit argument is the file name of the entity or module.

See Also “Generating Scripts for EDA Tools” on page 3-110

6-33

HDLSynthInit

Purpose Specify string written to initialization section of synthesis script

Settings 'string'

The default string is 'project -new %s.prj\n', which is a synthesis
project creation command.

The implicit argument is the top-level module or entity name.

See Also “Generating Scripts for EDA Tools” on page 3-110

6-34

HDLSynthTerm

Purpose Specify string written to termination section of synthesis script

Settings 'string'

The default string is

['set_option -technology VIRTEX2\n',...

'set_option -part XC2V500\n',...

'set_option -synthesis_onoff_pragma 0\n',...

'set_option -frequency auto\n',...

'project -run synthesis\n']

See Also “Generating Scripts for EDA Tools” on page 3-110

6-35

HDLSimViewWaveCmd

Purpose Specify waveform viewing command written to simulation script

Settings 'string'

The default string is 'add wave sim:%s\n'

The implicit argument is the top-level module or entity name.

See Also “Generating Scripts for EDA Tools” on page 3-110

6-36

HoldTime

Purpose Specify hold time for filter data input signals and forced reset input
signals

Settings ns

Specify the number of nanoseconds (a positive integer) during which
filter data input signals and forced reset input signals are held past the
clock rising edge. The default is 2.

This option applies to reset input signals only if forced resets are
enabled.

Usage
Notes

The hold time is the amount of time that reset input signals and input
data are held past the clock rising edge. The following figures show the
application of a hold time (thold) for reset and data input signals when
the signals are forced to active high and active low.

Note A reset signal is always asserted for two cycles plus thold.

(���'

"	�	�
)����
*���#	
����

�����

�����

"	�	�
)����
*���#	
��$

Hold Time for Reset Input Signals

6-37

HoldTime

(���'

����
)����
�����

Hold Time for Data Input Signals

See Also ClockHighTime, ClockLowTime, ForceClock, ForceClockEnable,
ForceReset

6-38

InlineConfigurations

Purpose Specify whether generated VHDL code includes inline configurations

Settings 'on' (default)

Include VHDL configurations in any file that instantiates a component.

'off'

Suppress the generation of configurations and require user-supplied
external configurations. Use this setting if you are creating your own
VHDL configuration files.

Usage
Notes

VHDL configurations can be either inline with the rest of the VHDL
code for an entity or external in separate VHDL source files. By
default, the Filter Design HDL Coder includes configurations for a
filter within the generated VHDL code. If you are creating your own
VHDL configuration files, you should suppress the generation of inline
configurations.

See Also CastBeforeSum, , LoopUnrolling, SafeZeroConcat, ScaleWarnBits,
UseAggregatesForConst, UseRisingEdge

6-39

InputPort

Purpose Name HDL port for filter’s input signals

Settings 'string'

The default string is filter_in.

For example, if you specify the string 'filter_data_in' for filter entity
Hd, the generated entity declaration might look as follows:

ENTITY Hd IS

PORT(clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

filter_data_in : IN std_logic_vector (15 DOWNTO 0);

filter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END Hd;

If you specify a string that is a VHDL reserved word, a reserved word
postfix string is appended to form a valid VHDL identifier. For example,
if you specify the reserved word signal, the resulting name string would
be signal_rsvd. See ReservedWordPostfix for more information.

See Also ClockEnableInputPort, ClockInputPort, OutputPort, OutputType,
ResetInputPort

6-40

InputType

Purpose Specify HDL data type for filter’s input port

Settings 'std_logic_vector'

Specifies VHDL type STD_LOGIC_VECTOR for the filter input port.

'signed/unsigned'

Specifies VHDL type SIGNED or UNSIGNED for the filter input port.

'wire' (Verilog)

If the target language is Verilog, the data type for all ports is wire. This
property is not modifiable in this case.

See Also ClockEnableInputPort, ClockInputPort, InputPort, OutputPort,
OutputType, ResetInputPort

6-41

InstanceGenerateLabel

Purpose Specify string to append to instance section labels in VHDL GENERATE
statements

Settings 'string'

Specify a postfix string to append to instance section labels in VHDL
GENERATE statements. The default string is _gen.

See Also BlockGenerateLabel, OutputGenerateLabel

6-42

LoopUnrolling

Purpose Specify whether VHDL FOR and GENERATE loops are unrolled and
omitted from generated VHDL code

Settings 'on'

Unroll and omit FOR and GENERATE loops from the generated VHDL
code. Verilog is always unrolled.

This option takes into account that some EDA tools do not support
GENERATE loops. If you are using such a tool, enable this option to omit
loops from your generated VHDL code.

'off' (default)

Include FOR and GENERATE loops in the generated VHDL code.

Usage
Notes

The setting of this option does not affect generated VHDL code during
simulation or synthesis.

See Also CastBeforeSum, InlineConfigurations, , LoopUnrolling,
SafeZeroConcat, ScaleWarnBits, UseAggregatesForConst,
UseRisingEdge

6-43

Name

Purpose Specify file name for generated HDL code and name for filter’s VHDL
entity or Verilog module

Settings 'string'

The defaults take the name of the filter as defined in the FDATool.

The file type extension for the generated file is the string specified for
the file type extension option for the selected language.

The generated file is placed in the directory or path specified by
TargetDirectory.

If you specify a string that is a reserved word in the selected language,
the coder appends the string specified by ReservedWordPostfix. For a
list of reserved words, see “Setting the Postfix String for Resolving HDL
Reserved Word Conflicts” on page 3-37.

See Also VerilogFileExtension, VHDLFileExtension, TargetDirectory

6-44

OptimizeForHDL

Purpose Specify whether generated HDL code is optimized for specific
performance or space requirements

Settings 'on'

Generate HDL code that is optimized for specific performance or space
requirements. As a result of these optimizations, the Filter Design HDL
Coder may

• Make tradeoffs concerning data types

• Avoid excessive quantization

• Generate code that produces numeric results that differ from results
produced by the original MATLAB filter function

'off' (default)

Generate HDL code that maintains bit compatibility with the numeric
results produced by the specified quantized filter in MATLAB.

See Also AddPipelineRegisters, CoeffMultipliers, FIRAdderStyle

6-45

OutputGenerateLabel

Purpose Specify string that labels output assignment block for VHDL GENERATE
statements

Settings 'string'

Specify a postfix string to append to output assignment block labels in
VHDL GENERATE statements. The default string is outputgen.

See Also BlockGenerateLabel, InstanceGenerateLabel

6-46

OutputPort

Purpose Name HDL port for filter’s output signals

Settings 'string'

The default is filter_out.

For example, if you specify 'filter_data_out' for filter entity Hd, the
generated entity declaration might look as follows:

ENTITY Hd IS

PORT(clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

filter_in : IN std_logic_vector (15 DOWNTO 0);

filter_data_out : OUT std_logic_vector (15 DOWNTO 0);

);

ENDHd;

If you specify a string that is a VHDL reserved word, a reserved word
postfix string is appended to form a valid VHDL identifier. For example,
if you specify the reserved word signal, the resulting name string would
be signal_rsvd. See ReservedWordPostfix for more information.

See Also ClockEnableInputPort, ClockInputPort, InputPort, InputType,
OutputType, ResetInputPort

6-47

OutputType

Purpose Specify HDL data type for filter’s output port

Settings The filter’s output port has the same type as the specified input port
type.

'std_logic_vector' (VHDL default)

The filter’s output port has VHDL type STD_LOGIC_VECTOR.

'signed/unsigned'

The filter’s input port has type SIGNED or UNSIGNED.

'wire' (Verilog)

If the target language is Verilog, the data type for all ports is wire. This
property is not modifiable in this case.

See Also ClockEnableInputPort, ClockInputPort, InputPort, InputType,
OutputPort, ResetInputPort

6-48

PackagePostfix

Purpose Specify a string to append to the specified filter name to form the name
of a VHDL package file

Settings 'string'

The coder applies this option only if a package file is required for the
design. The default string is _pkg.

See Also ClockProcessPostfix, CoeffPrefix, EntityConflictPostfix,
ReservedWordPostfix

6-49

ReservedWordPostfix

Purpose Specify string to append to value names, postfix values, or labels that
are VHDL or Verilog reserved words

Settings 'string'

The default postfix is _rsvd.

For example, if you name your filter mod, the Filter Design HDL Coder
adds the postfix _rsvd to form the name mod_rsvd.

See Also ClockProcessPostfix, CoeffPrefix, EntityConflictPostfix,
PackagePostfix

6-50

ResetAssertedLevel

Purpose Specify asserted (active) level of reset input signal

Settings 'active-high' (default)

Specify that the reset input signal must be driven high (1) to reset
registers in the filter design. For example, the following code
fragment checks whether reset is active high before populating the
delay_pipeline register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

'active-low'

Specify that the reset input signal must be driven low (0) to reset
registers in the filter design. For example, the following code
fragment checks whether reset is active low before populating the
delay_pipeline register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '0' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

See Also ResetType

6-51

ResetInputPort

Purpose Name HDL port for filter’s reset input signals

Settings 'string'

The default name for the filter’s reset input port is reset.

For example, if you specify the string 'filter_reset' for filter entity
Hd, the generated entity declaration might look as follows:

ENTITY Hd IS

PORT(clk : IN std_logic;

clk_enable : IN std_logic;

filter_reset : IN std_logic;

filter_in : IN std_logic_vector (15 DOWNTO 0);

filter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END Hd;

If you specify a string that is a VHDL reserved word, a reserved word
postfix string is appended to form a valid VHDL identifier. For example,
if you specify the reserved word signal, the resulting name string would
be signal_rsvd. See ReservedWordPostfix for more information.

Usage
Notes

If the reset asserted level is set to active high, the reset input signal is
asserted active high (1) and the input value must be high (1) for the
entity’s registers to be reset. If the reset asserted level is set to active
low, the reset input signal is asserted active low (0) and the input value
must be low (0) for the entity’s registers to be reset.

See Also ClockEnableInputPort, ClockInputPort, InputPort, InputType,
OutputPort, OutputType

6-52

ResetType

Purpose Specify whether to use asynchronous or synchronous reset style when
generating HDL code for registers

Settings 'async' (default)

Use an asynchronous reset style. The following generated code fragment
illustrates the use of asynchronous resets. Note that the process block
does not check for an active clock before performing a reset.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

IF Reset_Port = '1' THEN
delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));

ELSIF Clock_Port'event AND Clock_Port = '1' THEN
IF ClockEnable_Port = '1' THEN

delay_pipeline(0) <= signed(Fin_Port)
delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

END IF;
END IF;

END PROCESS delay_pipeline_process;

'sync'

Use a synchronous reset style. Code for a synchronous reset follows.
This process block checks for a clock event, the rising edge, before
performing a reset.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

IF rising_edge(Clock_Port) THEN
IF Reset_Port = '0' THEN

delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));
ELSIF ClockEnable_Port = '1' THEN

delay_pipeline(0) <= signed(Fin_Port)
delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

END IF;
END IF;

END PROCESS delay_pipeline_process;

6-53

ResetType

See Also ResetAssertedLevel

6-54

ReuseAccum

Purpose Enable accumulator reuse, generating cascade-serial architecture for
FIR filters

Settings 'off' (default)

Disable accumulator reuse.

'on'

Enable accumulator reuse when generating a partly serial architecture.
(i.e., a cascade-serial architecture). If the number and size of serial
partitions is not specified (see SerialPartition), Filter Design HDL
Coder generates an optimal partition.

Usage
Notes

In a cascade-serial architecture, filter taps are grouped into a number
of serial partitions, and the accumulated output of each partition is
cascaded to the accumulator of the previous partition. The output
of all partitions is therefore computed at the accumulator of the first
partition. This technique, termed accumulator reuse, saves chip area.

See “Speed vs. Area Optimizations for FIR Filters” on page 3-61 for a
complete description of parallel and serial architectures and a list of
filter types upported for each architecture.

See Also SerialPartition

6-55

SafeZeroConcat

Purpose Specify syntax used in generated VHDL code for concatenated zeros

Settings 'on' (default)

Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically,
this syntax is preferred.

'off'

Use the syntax "000000..." for concatenated zeros. This syntax can be
easier to read and is more compact, but can lead to ambiguous types.

See Also CastBeforeSum, InlineConfigurations, , LoopUnrolling,
SafeZeroConcat, ScaleWarnBits, UseAggregatesForConst,
UseRisingEdge

6-56

ScaleWarnBits

Purpose Specify threshold for generation of warning for scale values that may
cause quantization noise

Settings n

Specify a numeric value the coder uses as a minimum overlap threshold
between input data and scale values converted to the input data format
before issuing warnings that suggest quantization noise. The default
minimum is 3 bits.

To suppress the warnings, specify a value that equals the number of bits
in the input format.

Usage Use this option for fixed-point filters when you need to control whether
the coder generates a warning for scale values that are below a specified
numeric threshold relative to the input data format. These warnings
help identify scale values that cause the input range to be quantized to
near zero, adding quantization noise.

You can control the warnings by adjusting an overlap threshold. The
coder temporarily converts a scale value to the data type of the filter
input. Then, the coder checks whether the number of leading zeros in
the converted value is greater than or equal to the specified overlap
threshold. If this condition exists, the coder generates a warning.

You can prevent the coder from generating these warnings by setting
the minimum overlap to the number of bits in the input format.
However, if the converted scale value equals zero, the coder reports an
error because the input range is quantized away.

For examples, see “ Minimizing Quantization Noise for Fixed-Point
Filters” on page 3-46.

See Also CastBeforeSum, InlineConfigurations, LoopUnrolling,
SafeZeroConcat, ScaleWarnBits, UseAggregatesForConst,
UseRisingEdge, UseVerilogTimescale

6-57

SerialPartition

Purpose Specify number and size of partitions generated for serial FIR filter
architectures

Settings N

Generate a fully serial architecture for a filter of length N.

[p1 p2 p3...pN]

Where [p1 p2 p3...pN] is a vector of N integers, generate a partly
serial architecture with N partitions. Each element of the vector
specifies the length of the corresponding partition. The sum of the
vector elements must be equal to the length of the filter.

Usage
Notes

To save chip area in a partly serial architecture, you can enable the
ReuseAccum property.

See “Speed vs. Area Optimizations for FIR Filters” on page 3-61 for a
complete description of parallel and serial architectures and a list of
filter types upported for each architecture.

See Also ReuseAccum

6-58

SimulatorFlags

Purpose Specify simulator flags applied to generated test bench

Settings 'string'

Specify options that are specific to your application and the simulator
you are using. For example, if you must use the 1076–1993 VHDL
compiler, specify the flag -93.

Usage
Notes

The flags you specify with this option are added to the vsim command
in generated ModelSim .do test bench files.

6-59

SplitArchFilePostfix

Purpose Specify string to append to specified name to form name of file
containing filter’s VHDL architecture

Settings 'string'

The default is _arch. This option applies only if you direct the Filter
Design HDL Coder to place the filter’s entity and architecture in
separate files.

Usage
Notes

The option applies only if you direct the Filter Design HDL Coder to
place the filter’s entity and architecture in separate files.

See Also SplitEntityArch, SplitEntityFilePostfix

6-60

SplitEntityArch

Purpose Specify whether generated VHDL entity and architecture code is
written to single VHDL file or to separate files

Settings 'on'

Write the code for the filter VHDL entity and architecture to separate
files.

The names of the entity and architecture files derive from the base
file name (as specified by the filter name). By default, postfix strings
identifying the file as an entity (_entity) or architecture (_arch)
are appended to the base file name. You can override the default and
specify your own postfix string. The file type extension is specified by
the VHDL file extension option.

For example, instead of all generated code residing in MyFIR.vhd,
you can specify that the code reside in MyFIR_entity.vhd and
MyFIR_arch.vhd.

'off'(default)

Write the generated filter VHDL code to a single file.

See Also SplitArchFilePostfix, SplitEntityFilePostfix

6-61

SplitEntityFilePostfix

Purpose Specify string to append to specified filter name to form name of file
that contains filter’s VHDL entity

Settings 'string'

The default is _entity. This option applies only if you direct the
Filter Design HDL Coder to place the filter’s entity and architecture
in separate files.

Usage
Notes

This option applies only if you direct the Filter Design HDL Coder to
place the filter’s entity and architecture in separate files.

See Also SplitEntityArch, SplitArchFilePostfix

6-62

TargetDirectory

Purpose Identify directory into which generated output files are written

Settings Specify the subdirectory under the current working directory into
which generated files are written. The string can specify a complete
pathname. The default string is hdlsrc.

See Also Name, VerilogFileExtension, VHDLFileExtension

6-63

TargetLanguage

Purpose Specify HDL language to use for generated filter code

Settings 'VHDL' (default)

Generate VHDL filter code.

'verilog'

Generate Verilog filter code.

6-64

TestBenchName

Purpose Name VHDL test bench entity or Verilog module and file that contains
test bench code

Settings 'string'

The file type extension depends on the type of test bench that is being
generated.

If the Test Bench Is
a...

The Extension Is...

Verilog file Defined by the Verilog file extension option

VHDL file Defined by the VHDL file extension option

ModelSim .do file .do

The file is placed in the directory defined by the specified target
directory.

If you specify a string that is a VHDL or Verilog reserved word, a
reserved word postfix string is appended to form a valid HDL identifier.
For example, if you specify the reserved word entity, the resulting
name string would be entity_rsvd. To set the reserved word postfix
string, see ReservedWordPostfix.

See Also ClockHighTime, ClockLowTime, ForceClock, ForceClockEnable,
ForceReset, HoldTime, TestBenchName

6-65

TestBenchStimulus

Purpose Specify input stimuli that test bench applies to filter

Settings 'impulse'

Specify that the test bench acquire an impulse stimulus response.
The impulse response is output arising from the unit impulse input
sequence defined such that the value of x(n) is 1 when n equals 1 and
x(n) equals 0 when n does not equal 1.

'step'

Specify that the test bench acquire a step stimulus response.

'ramp'

Specify that the test bench acquire a ramp stimulus response, which is
a constantly increasing or constantly decreasing signal.

'chirp'

Specify that the test bench acquire a chirp stimulus response, which is
a linear swept-frequency cosine signal.

'noise'

Specify that the test bench acquire a white noise stimulus response.

Default settings depend on the structure of the filter.

For Filters... Default Responses Include...

FIR, FIRT, Symmetric
FIR, and Antisymmetric
FIR

Impulse, step, ramp, chirp, and white
noise

All others Step, ramp, and chirp

Usage
Notes

You can specify any combination of stimuli in any order. If you specify
multiple stimuli, specify the appropriate strings in a cell array. For
example:

{'impulse', 'ramp', 'noise'}

6-66

TestBenchStimulus

See Also TestBenchUserStimulus

6-67

TestBenchUserStimulus

Purpose Specify user-defined MATLAB function that returns vector of values
that test bench applies to filter

Settings M-function

For example, the following MATLAB function call generates a square
wave with a sample frequency of 8 bits per second (Fs/8):

repmat([1 1 1 1 0 0 0 0], 1, 10)

See Also TestBenchStimulus

6-68

UseAggregatesForConst

Purpose Specify whether all constants are represented by aggregates, including
constants that are less than 32 bits

Settings 'on'

Specify that all constants, including constants that are less than 32
bits, be represented by aggregates. The following VHDL constant
declarations show scalars less than 32 bits being declared as aggregates:

CONSTANT coeff1 :signed(15 DOWNTO 0) := (4 DOWNTO 2 => '0', 0 =>'0',

OTHERS => ', '); -- sfix16_En15

CONSTANT coeff2 :signed(15 DOWNTO 0) := (6 => '0', 4 DOWNTO 3 => '0',

OTHERS => ', '); -- sfix16_En15

'off' (default)

Specify that the coder represent constants less than 32 bits as scalars
and constants greater than or equal to 32 bits as aggregates. This is
the default. The following VHDL constant declarations are examples of
declarations generated by default for values less than 32 bits:

CONSTANT coeff1 :signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_En15

CONSTANT coeff2 :signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15

See Also CastBeforeSum, InlineConfigurations, , LoopUnrolling,
SafeZeroConcat, ScaleWarnBits, UseAggregatesForConst,
UseRisingEdge, UseVerilogTimescale

6-69

UserComment

Purpose Specify string added as comment line in header of generated filter and
test bench files

Settings 'string'

For example, you might use this property to add the revision control tag
$Revision: 1.1.4.7 $ to the header. The resulting header comment
block for filter Hd would appear as follows:

--

-- Module:Hd

--

-- Generated by MATLAB(R) 7.0 and the Filter Design HDL Coder 1.0.

--

-- Generated on: 2004-02-04 09:42:43

--

-- $Revision: 1.1.4.10 $

6-70

UseRisingEdge

Purpose Specify VHDL coding style used to check for rising edges when
operating on registers

Settings 'on'

Use the VHDL rising_edge function to check for rising edges when
operating on registers. The generated code applies rising_edge as
shown in the following PROCESS block:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

ELSIF rising_edge(clk) THEN
IF clk_enable = '1' THEN

delay_pipeline(0) <= signed(filter_in);
delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

END IF;
END IF;

END PROCESS Delay_Pipeline_Process ;

'off' (default)

Check for clock events when operating on registers. The generated
code checks for a clock event as shown in the ELSIF statement of the
following PROCESS block:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

ELSIF clk'event AND clk = '1' THEN
IF clk_enable = '1' THEN

delay_pipeline(0) <= signed(filter_in);
delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);

END IF;

6-71

UseRisingEdge

END IF;
END PROCESS Delay_Pipeline_Process ;

Usage
Notes

The two coding styles have different simulation behavior when the clock
transitions from 'X' to '1'.

See Also CastBeforeSum, InlineConfigurations, , LoopUnrolling,
SafeZeroConcat, ScaleWarnBits, UseAggregatesForConst,
UseRisingEdge

6-72

UseVerilogTimescale

Purpose Allow or exclude use of compiler `timescale directives in generated
Verilog code

Settings 'on' (default)

Use compiler `timescale directives in generated Verilog code.

'off'

Suppress the use of compiler `timescale directives in generated Verilog
code.

Usage
Notes

The `timescale directive provides a way of specifying different delay
values for multiple modules in a Verilog file.

See Also CastBeforeSum, InlineConfigurations, , LoopUnrolling,
SafeZeroConcat, ScaleWarnBits, UseAggregatesForConst,
UseRisingEdge

6-73

VerilogFileExtension

Purpose Specify file type extension for generated Verilog files

Settings 'string'

The default file type extension for generated Verilog files is .v.

See Also Name, TargetDirectory

6-74

VHDLFileExtension

Purpose Specify file type extension for generated VHDL files

Settings 'string'

The default file type extension for generated VHDL files is .vhd.

See Also Name, TargetDirectory

6-75

7

Functions — Alphabetical
List

generatehdl

Purpose Generate HDL code for quantized filter

Syntax generatehdl(Hd)
generatehdl(Hd 'PropertyName', 'PropertyValue',...)

Description generatehdl(Hd) generates HDL code for the quantized filter identified
by Hd. The function uses default settings for properties that determine
file and HDL element naming, whether optimizations are applied,
HDL coding styles, and test bench characteristics. The defaults are
summarized below.

Defaults for Naming, Location and Packaging of Generated Files

• Places generated files in the target directory hdlsrc and names
the files as follows:

File Name

Verilog
source

Hd.v, where Hd is the name of the specified filter
object

VHDL
source

Hd.vhd, where Hd is the name of the specified
filter object

VHDL
package

Hd_pkg.vhd, where Hd is the name of the specified
filter object

• Places generated files in a subdirectory name hdlsrc, under
your current working directory.

• Includes the VHDL entity and architecture code in a single
source file.

• Generates script files for third-party EDA tools. Where Hd is
the name of the specified filter object, the following script files
are generated:

— Hd_compile.do : ModelSim compilation script. This script
contains commands to compile the generated filter code, but
not to simulate it.

7-2

generatehdl

— Hd_synplify.tcl : Synplify synthesis script

Default Settings for Register Resets

• Uses an asynchronous reset when generating HDL code for
registers.

• Uses an active-high (1) signal for register resets.

Default Settings for General HDL Code

• Names the generated VHDL entity or Verilog module with the
name of the quantized filter.

• Names a filter’s HDL ports as follows:

HDL Port Name

Input filter_in

Output filter_out

Clock input clk

Clock enable
input

clk_enable

Reset input reset

• Sets the data type for clock input, clock enable input, and reset
ports to STD_LOGIC and data input and output ports to VHDL
type STD_LOGIC_VECTOR or Verilog type wire.

• Names coefficients as follows:

For... Names Coefficients...

FIR
filters

coeffn, where n is the coefficient number,
starting with 1

IIR filters coeff_xm_sectionn, where x is a or b, m is the
coefficient number, and n is the section number

7-3

generatehdl

• When declaring signals of type REAL, initializes the signal with
a value of 0.0.

• Places VHDL configurations in any file that instantiates a
component.

• Appends _rsvd to names that are VHDL or Verilog reserved
words.

• Uses a type safe representation when concatenating zeros: '0'
& '0'...

• Applies the statement IF clock'event AND clock='1' THEN
to check for clock events.

• Allows a minimum of 3 bits of filter input and coefficient scale
values to overlap before a warning is issued.

• Adds an extra input register and an extra output register to
the filter.

• Appends _process to process names.

• When creating labels for VHDL GENERATE statements:

— Appends _gen to section and block names.

— Names output assignment blocks with the string outputgen.

Default Settings for Code Optimizations

• Generates HDL code that is bit-true to the original MATLAB
filter function and is not optimized for performance or space
requirements.

• Applies a linear final summation to FIR filters. This is the form
of summation explained in most DSP text books.

• Enables multiplier operations for a filter, as opposed to
replacing them with additions of partial products.

generatehdl(Hd 'PropertyName', 'PropertyValue',...) generates
HDL code for the filter identified by Hd, using the specified property
name and property value pair settings. You can specify the function

7-4

generatehdl

with one or more of the property name and property value pairs
described in Chapter 5, “Properties — By Category” and Chapter 6,
“Properties — Alphabetical List”.

Example 1 Design a filter. The call to firceqrip in the following command
sequence designs an equiripple lowpass finite impulse response (FIR)
filter with linear phase, an order of 30, a cutoff frequency of 0.4,
and maximum passband and stopband errors set to 0.05 and 0.03,
respectively. The design results are returned to the cell array h.

2 Construct a quantized filter. The call to dfilt constructs a
quantized FIR filter Hd with reference coefficients specified by the
cell array h.

3 Set the filter arithmetic. The arithmetic assignment statement
sets the filter arithmetic to fixed-point arithmetic.

4 Generate HDL code for the filter. The call to generatehdl
generates HDL code for the quantized filter Hd. The function names
the file MyFilter.vhd and places it in the default target directory
hdlsrc.

h=firceqrip(30,0.4,[0.05 0.03]); %Design a filter
Hd= dfilt.dffir(h); %Construct a quantized filter
Hd.arithmetic='fixed'; %Quantized filter with default settings
generatehdl(Hd, 'Name', 'MyFilter'); %Generate filter's VHDL code

See Also generatetb, generatetbstimulus

7-5

generatetb

Purpose Generate HDL test bench for quantized filter

Syntax generatetb(Hd, 'TbType')
generatetb(Hd 'TbType', 'PropertyName', 'PropertyValue',...)

Description generatetb(Hd, 'TbType') generates a HDL test bench of a specified
type to verify the HDL code generated for the quantized filter identified
by Hd. The value that you specify for 'TbType' identifies the type of test
bench to be generated and can be one of the following values or a cell
array that contains one or more of the following values:

Specify... To Generate a Test Bench Consisting of...

'Verilog' Verilog code

'VHDL' VHDL code

'ModelSim' ModelSim script file

The generated test bench applies input stimuli based on the setting of
the properties TestBenchStimulus and TestBenchUserStimulus. By
default, TestBenchStimulus specifies impulse, step, ramp, chirp, and
noise stimuli for FIR, FIRT, Symmetric FIR, and Antisymmetric FIR
filters and step, ramp, and chirp stimuli for all other filters.

The function uses default settings for other properties that determine
test bench characteristics. By default the function does the following.

Default Settings for the Test Bench

• Places the generated test bench file in the target directory
hdlsrc under your current working directory with the name
Hd_tb and a file type extension that is based on the type of
test bench you are generating.

7-6

generatetb

If the Test Bench Is a... The Extension Is...

Verilog file Defined by the property
VerilogFileExtension

VHDL file Defined by the property
VHDLFileExtension

ModelSim .do file .do

• Generates script files for third-party EDA tools. Where Hd is
the name of the specified filter object, the following script files
are generated:

— Hd_tb_compile.do :ModelSim compilation script. This
script contains commands to compile the generated filter and
test bench code.

— Hd_tb_sim.do: ModelSim simulation script. This script
contains commands to run a simulation of the generated
filter and test bench code.

• Forces clock, clock enable, and reset input signals.

• Forces clock enable and reset input to active high.

• Drives the clock input signal high (1) for 5 nanoseconds and low
(0) for 5 nanoseconds.

• Forces reset signals.

• Applies a hold time of 2 nanoseconds to filter reset and data
input signals.

• For HDL test benches, applies an error margin of 4 bits.

Default Settings for Files

• Places generated files in the target directory hdlsrc and names
the files as follows:

7-7

generatetb

File Name

Verilog
source

Hd.v, where Hd is the name of the specified filter
object

VHDL
source

Hd.vhd, where Hd is the name of the specified
filter object

VHDL
package

Hd_pkg.vhd, where Hd is the name of the
specified filter object

• Places generated files in a subdirectory name hdlsrc, under
your current working directory.

• Includes VHDL entity and architecture code in a single source
file.

Default Settings for Register Resets

• Uses an asynchronous reset when generating HDL code for
registers.

• Asserts the reset input signal high (1) to reset registers in the
design.

Default Settings for General HDL Code

• Names the generated VHDL entity or Verilog module with the
name of the filter.

• Names the filter’s HDL ports as follows:

HDL Port Name

Input filter_in

Output filter_out

Clock input clk

Clock enable
input

clk_enable

Reset input reset

7-8

generatetb

• Sets the data type for clock input, clock enable input, and reset
ports to STD_LOGIC and data input and output ports to VHDL
type STD_LOGIC_VECTOR or Verilog type wire.

• Names coefficients as follows:

For... Names Coefficients...

FIR filters coeffn, where n is the coefficient number,
starting with 1

IIR filters coeff_xm_sectionn, where x is a or b, m is the
coefficient number, and n is the section number

• When declaring signals of type REAL, initializes the signal with
a value of 0.0.

• Places VHDL configurations in any file that instantiates a
component.

• Appends _rsvd to names that are VHDL or Verilog reserved
words.

• Uses a type safe representation when concatenating zeros: '0'
& '0'...

• Applies the statement IF clock'event AND clock='1' THEN
to check for clock events.

• Allows scale values to be up to 3 bits smaller than filter input
values.

• Adds an extra input register and an extra output register to
the filter.

• Appends _process to process names.

• When creating labels for VHDL GENERATE statements:

— Appends _gen to section and block names.

— Names output assignment blocks with the string outputgen

7-9

generatetb

Default Settings for Code Optimizations

• Generates HDL code that is bit-true to the original MATLAB
filter function and is not optimized for performance or space
requirements.

• Applies a linear final summation to FIR filters. This is the form
of summation explained in most DSP text books.

• Enables multiplier operations for a filter, as opposed to
replacing them with additions of partial products.

generatetb(Hd 'TbType', 'PropertyName',
'PropertyValue',...) generates a HDL test bench of a specified type
to verify the HDL code generated for the quantized filter identified by
Hd, using the specified property name and property value pair settings.
You can specify the function with one or more of the property name
and property value pairs described in Chapter 5, “Properties — By
Category” and Chapter 6, “Properties — Alphabetical List”.

Example 1 Design a filter. The call to firceqrip in the following command
line sequence designs an equiripple lowpass finite impulse response
(FIR) filter with linear phase, an order of 30, a cutoff frequency of 0.4,
and maximum passband and stopband errors set to 0.05 and 0.03,
respectively. The design results are returned to the cell array h.

2 Construct a quantized filter. The call to dfilt constructs a
quantized FIR filter Hd with reference coefficients specified by the
cell array h returned by firceqrip.

3 Set the filter arithmetic. The arithmetic assignment statement
sets the filter arithmetic to fixed-point arithmetic.

4 Generate VHDL code for the filter. The call to generatehdl
generates VHDL code for the quantized filter Hd. The function names
the file MyFilter.vhd and places it in the default target directory
hdlsrc.

7-10

generatetb

5 Generate a test bench for the filter. The call to generatetb
generates a ModelSim VHDL test bench for the filter Hd named
Hd_tb.do and places the generated test bench file in the default
target directory hdlsrc.

h=firceqrip(30,0.4,[0.05 0.03]); %Design a filter

Hd= dfilt.dffir(h); %Construct a quantized filter

Hd.arithmetic='fixed'; %Quantized filter with default settings

generatehdl(Hd, 'Name', 'MyFilter'); %Generate filter's VHDL code

generatetb(Hd, 'ModelSim', 'TestBenchName', 'MyFilterTB');

See Also generatetbstimulus, generatehdl

7-11

generatetbstimulus

Purpose Generate and return HDL test bench stimulus

Syntax generatetbstimulus(Hd)
generatetbstimulus(Hd, 'PropertyName', 'PropertyValue'...)
x = generatetbstimulus(Hd, 'PropertyName',

'PropertyValue'...)

Description generatetbstimulus(Hd) generates and returns filter input
stimulus for the filter Hd based on the setting of the properties
TestBenchStimulus and TestBenchUserStimulus. By default,
TestBenchStimulus specifies impulse, step, ramp, chirp, and noise
stimuli for FIR, FIRT, Symmetric FIR, and Antisymmetric FIR filters,
and step, ramp, and chirp stimuli for all other filters.

Note The function quantizes the results by applying the reference
coefficients of the specified quantized filter.

generatetbstimulus(Hd, 'PropertyName', 'PropertyValue'...)
generates and returns filter input stimuli for the filter Hd based on
specified settings for TestBenchStimulus and TestBenchUserStimulus.

x = generatetbstimulus(Hd, 'PropertyName',
'PropertyValue'...)generates and returns filter input stimuli for
the filter Hd based on specified settings for TestBenchStimulus and
TestBenchUserStimulus and writes the output to x for future use or
reference.

Example 1 Generate and return test bench stimuli. The call to
generatetbstimulus in the following command line sequence
generates ramp and chirp stimuli and returns the results to y.

2 Apply a quantized filter to the data and plot the results. The
call to the filter function applies the quantized filter Hd to the
data that was returned to y and gains access to state and filtering
information. The plot function then plots the resulting data.

7-12

generatetbstimulus

y = generatetbstimulus(Hd, 'TestBenchStimulus', {'ramp', 'chirp'});

%Generate and return test bench stimuli

plot(filter(Hd,y)); %Apply a quantized filter to the

data and plot the results

See Also generatetb

7-13

A

Examples

Use this list to find examples in the documentation.

A Examples

Tutorials
“Basic FIR Filter Tutorial” on page 2-3
“Optimized FIR Filter Tutorial” on page 2-23
“IIR Filter Tutorial” on page 2-44

Basic FIR Filter Tutorial
“Designing a Basic FIR Filter” on page 2-3
“Quantizing the Basic FIR Filter” on page 2-5
“Configuring and Generating the Basic FIR Filter’s VHDL Code” on page
2-8
“Getting Familiar with the Basic FIR Filter’s Generated VHDL Code” on
page 2-15
“Verifying the Basic FIR Filter’s Generated VHDL Code” on page 2-17

Optimized FIR Filter Tutorial
“Designing the FIR Filter” on page 2-23
“Quantizing the FIR Filter” on page 2-25
“Configuring and Generating the FIR Filter’s Optimized Verilog Code”
on page 2-28
“Getting Familiar with the FIR Filter’s Optimized Generated Verilog Code”
on page 2-35
“Verifying the FIR Filter’s Optimized Generated Verilog Code” on page 2-37

IIR Filter Tutorial
“Designing an IIR Filter” on page 2-44
“Quantizing the IIR Filter” on page 2-46
“Configuring and Generating the IIR Filter’s VHDL Code” on page 2-50
“Getting Familiar with the IIR Filter’s Generated VHDL Code” on page 2-57
“Verifying the IIR Filter’s Generated VHDL Code” on page 2-58

A-2

Speed vs. Area Optimizations for FIR Filters

Speed vs. Area Optimizations for FIR Filters
“Specifying Parallel and Serial FIR Architectures in generatehdl” on page
3-65

A-3

A Examples

A-4

Index

IndexA
Add input register option 3-45
Add output register option 3-45
AddInputRegister property 6-2
addition operations

specifying input type treatment for 3-55
type casting 6-6

AddOutputRegister property 6-3
AddPipelineRegisters property 6-4
advanced coding properties 5-4
Advanced tab 3-46
antisymmetric FIR filters 1-6
application-specific integrated circuits

(ASICs) 1-2
Architecture options

for FIR filters 3-61
cascade serial 3-61
Distributed arithmetic (DA) 3-71
fully parallel 3-61
fully serial 3-61
partly serial 3-61

architectures
setting postfix from command line 6-60
setting postfix from GUI 3-26

asserted level, reset 3-30
setting 6-51

asynchronous resets
setting from command line 6-53
setting from GUI 3-29

B
block labels

for GENERATE statements 6-5
for output assignment blocks 6-46
specifying postfix for 6-5

BlockGenerateLabel property 6-5

C
canonical signed digit (CSD) technique 3-59
cascade filters 3-92
Cascaded Integrator Comb (CIC) filters 3-85
Cast before sum option 3-55
CastBeforeSum property 6-6
checklist

requirements 3-15
clock

configuring for test benches 3-99
specifying high time for 6-9
specifying low time for 6-12

clock enable input port
naming 3-42
specifying forced signals for 6-24

Clock enable port options 3-42
Clock high time option 3-99
clock input port 6-10

forcing 6-23
naming 3-42

Clock low time 3-99
Clock port options 3-42
clock process names

specifying postfix for 6-13
clock time

configuring 3-99
high 6-9
low 6-12

clocked process block labels 3-40
Clocked process postfix option 3-40
ClockEnableInputPort property 6-7
ClockEnableOutputPort property 6-8
ClockHighTime property 6-9
ClockInputPort property 6-10
ClockInputs property 6-11
ClockLowTime property 6-12
ClockProcessPostfix property 6-13
code, generated 3-109

advanced properties for customizing 5-4
compiling 4-16

Index-1

Index

configuring for basic FIR filter tutorial 2-8
configuring for IIR filter tutorial 2-50
configuring for optimized FIR filter

tutorial 2-28
customizing 3-32
defaults 3-10
for filter and test bench 4-3
general HDL defaults 3-11
optimizing 3-58
reviewing for basic FIR filter tutorial 2-15
reviewing for IIR filter tutorial 2-57
reviewing for optimized FIR filter

tutorial 2-35
verifying for basic FIR filter tutorial 2-17
verifying for IIR filter tutorial 2-58
verifying for optimized FIR filter

tutorial 2-37
coefficient multipliers 3-59
Coefficient prefix option 3-35
coefficients

naming 6-15
specifying a prefix for 3-35

CoeffMultipliers property 6-14
CoeffPrefix property 6-15
command line interface 1-6

generating filter and test bench code
with 4-3

Comment in header option 3-33
comments, header

as property value 6-70
specifying 3-33

Concatenate type safe zeros 3-53
configurations, inline

suppressing from command line 6-39
suppressing from GUI 3-52

constants
setting representation from command

line 6-69
setting representation from GUI 3-48

context-sensitive help 1-12

D
DALUTPartition property 6-17
DARadix property 6-18
data input port

naming from command line 6-40
naming from GUI 3-42
specifying hold time for from GUI 3-103
specifying hold time for with command

line 6-37
data output port

specifying name from command line 6-47
specifying name from GUI 3-42

defaults
for general HDL code 3-11
for generated EDA tool scripts 3-11
for generated files 3-10
for optimizations 3-13
for resets 3-11
for test benches 3-13

demos 1-13
dialog box

HDL Options 3-32
dialogs

Generate HDL
description 1-4
opening 3-5
setting cascade filter options with 3-92
setting multirate filter options

with 3-85
setting optimizations with 3-57
setting test bench options with 3-95
specifying test bench type with 3-97

Test Bench Options 3-95
Direct Form I filters 1-6
Direct Form II filters 1-6
directory, target 6-63

E
EDAScriptGeneration property 6-19

Index-2

Index

Electronic Design Automation (EDA) tool
scripts
defaults for generation of 3-11

Electronic Design Automation (EDA) tools
generation of scripts for 3-110

entities
name conflicts of 3-36
naming 6-44
setting names of 3-23
setting postfix from command line 6-62
setting postfix from GUI 3-26

Entity conflict postfix option 3-36
entity name conflicts 6-20
EntityConflictPostfix property 6-20
error margin

specifying from command line 6-21
specifying from GUI 3-104

Error margin (bits) option 3-104
ErrorMargin property 6-21

F
factored CSD technique 3-59
FDATool 1-4
fdatool command 3-5
field programmable gate arrays (FPGAs) 1-2
file extensions

setting 3-23
Verilog 6-74
VHDL 6-75

file location properties 5-2
file names

for architectures 6-60
for entities 6-62

file naming properties 5-2
filenames

defaults 3-10
for generated output 1-9

files, generated
default names 3-10

defaults 3-10
HDL output 1-9
setting architecture postfix for 3-26
setting entity postfix for 3-26
setting location of 3-24
setting names of 3-23
setting options for 3-22
setting package postfix for 3-25
splitting 6-61
test bench 6-65

filter arithmetic 3-5
Filter Design HDL Coder

applying to hardware design process 1-14
as FDATool plug-in 1-4
command line interface 1-6
features of 1-3
graphical user interface (GUI) 1-4
prerequisite knowledge for 1-3
user profiles for 1-3
what is 1-2
workflow 1-14

filter input 6-57
filter structures 1-6
Filter target language option 3-21
filters

designing in basic FIR tutorial 2-3
designing in IIR filter tutorial 2-44
designing in optimized FIR filter

tutorial 2-23
generated HDL output for 1-9
naming generated file for 6-44
properties of 1-8
quantized 1-6
quantizing 3-5
realizations of 1-6

finite impulse response (FIR) filters 1-6
FIR adder style option 3-60
FIR filter architectures

serial 6-55
serial-cascade 6-55

Index-3

Index

FIR filter architectures property
partly serial 6-58
serial 6-58

FIR filter tutorial
basic 2-3
optimized 2-23

FIR filters 1-6
optimizing clock rate for 3-81
optimizing final summation for 3-60
specifying summation technique for 6-22

FIRAdderStyle property 6-22
Force clock enable option 3-99
Force clock option 3-99
force reset hold time 6-37
Force reset option 3-101
ForceClock property 6-23
ForceClockEnable property 6-24
ForceReset property 6-25
FPGAs (field programmable gate arrays) 1-2
functions

generatehdl 7-2
generatetb 7-6
generatetbstimulus 7-12
input parameters for 1-8

G
General tab 3-35
Generate HDL dialog box

defaults 3-10
description 1-4
opening 3-5
setting optimizations with 3-57
specifying test bench type with 3-97

generatehdl function 7-2
generatetb function 7-6
generatetbstimulus function 7-12
graphical user interface (GUI) 1-4

H
hardware description languages (HDLs) 1-2

See also Verilog; VHDL
HDL code 2-8

See also code, generated
HDL files 1-9
HDL language 3-21
HDL Options dialog box 3-32
HDL test benches 4-3
HDLCompileInit property 6-26
HDLCompileTerm property 6-27
HDLCompileVerilogCmd property 6-28
HDLCompileVHDLCmd property 6-29
HDLs (hardware description languages) 1-2

See also Verilog; VHDL
HDLSimCmd property 6-30
HDLSimInit property 6-31
HDLSimTerm property 6-32
HDLSimViewWaveCmd property 6-36
HDLSynthCmd property 6-33
HDLSynthInit property 6-34
HDLSynthTerm property 6-35
header comment properties 5-3
header comments 3-33
help

context-sensitive 1-12
getting 1-11

Help browser 1-12
hold time 6-37

for data input signals 3-103
for resets 3-101

HoldTime property 6-37

I
IIR filter tutorial 2-44
IIR filters 1-6

optimizing clock rate for 3-81
infinite impulse response (IIR) filters 1-6
inline configurations

Index-4

Index

specifying 6-39
suppressing the generation of 3-52

Inline VHDL configurations option 3-52
InlineConfigurations property 6-39
input data overlay with scale values 3-46
Input data type option 3-43
input parameters 1-8
Input port option 3-42
input ports

naming 3-42
specifying data type for 6-41

input registers
adding code for 6-2
suppressing generation of extra 3-45

InputPort property 6-40
InputType property 6-41
installation 1-10
instance sections 6-42
InstanceGenerateLabel property 6-42

L
labels

block 6-46
process block 3-40

language
setting target 3-21
target 6-64

language selection properties 5-2
linear FIR final summation 3-60
Loop unrolling option 3-49
loops

unrolling 6-43
unrolling and removing 3-49

LoopUnrolling property 6-43

M
M-help 1-12
Minimum overlap of scale values option 3-46

ModelSim 4-16
ModelSim .do file

executing 4-17
test benches 3-97
testing with 4-12

modules
name conflicts for 3-36
naming 6-44
setting names of 3-23

multipliers
optimizing coefficient 3-59

multirate filters
Cascaded Integrator Comb (CIC) 3-85
clock enable output for 6-8
clock inputs for 6-11
code generation for 3-85
decimating 3-85
Direct-Form Transposed FIR Polyphase

Decimator 3-85
interpolating 3-85
types supported for code generation 3-85

N
name conflicts 6-20
Name option 3-23
Name property 6-44
names

clock process 6-13
coefficient 3-35
package file 6-49

naming properties 5-3

O
optimization properties 5-6
optimizations

defaults for 3-13
for synthesis 3-83
HDL code 3-58

Index-5

Index

setting 3-57
Optimize for HDL option 3-58
optimized FIR filter tutorial 2-23
OptimizeForHDL property 6-45
options

Add input register 3-45
Add output register 3-45
Add pipeline registers 3-81
Architecture 3-61
Cast before sum 3-55
Clock enable input port 3-42
Clock high time 3-99
Clock low time 3-99
Clock port 3-42
Clocked process postfix 3-40
Coeff multipliers 3-59
Coefficient prefix 3-35
Comment in header 3-33
Concatenate type safe zeros 3-53
DA radix 3-71
Entity conflict postfix 3-36
Error margin (bits) 3-104
Filter target language 3-21
FIR adder style 3-60
Force clock 3-99
Force clock enable 3-99
Force reset 3-101
Hold time 3-103
Inline VHDL configurations 3-52
Input data type 3-43
Input port 3-42
Loop unrolling 3-49
LUT partition 3-71
Minimum overlap of scale values 3-46
Optimize for HDL 3-58
Output data type 3-43
Output port 3-42
Package postfix 3-25
Represent constant values by

aggregates 3-48

Reserved word postfix 3-37
Reset asserted level 3-30
Reset port 3-42
Reset type 3-29
Serial Partition 3-61
Split arch. file postfix 3-26
Split entity and architecture 3-26
Split entity file postfix 3-26
Target directory

for test bench output 3-95
redirecting output with 3-24

Use ’rising_edge’ for registers 3-50
Use Verilog `timescale directives 3-54
User defined response 3-106
Verilog file extension

setting file extension with 3-23
Verilog file extension option

renaming test bench file with 3-95
VHDL file extension

renaming test bench file with 3-95
setting file extension with 3-23

output
generated HDL 1-9
redirecting 3-24

Output data type option 3-43
Output port option 3-42
output ports

naming 3-42
specifying data type for 6-48

output registers
adding code for 6-3
suppressing generation of extra 3-45

OutputGenerateLabel property 6-46
OutputPort property 6-47
OutputType property 6-48

P
package files

default name for 3-10

Index-6

Index

specifying postfix for 6-49
Package postfix option 3-25
PackagePostfix property 6-49
packages

setting names of 3-23
setting postfix 3-25

parameters 1-8
pipeline registers

using from command line 6-4
using from GUI 3-81

pipelined FIR final summation 3-60
port data types 3-43
port properties 5-3
ports

clock enable input 6-7
clock input 6-10
data input 6-40
data output 6-47
input 6-41
naming 3-42
output 6-48
reset input 6-52

Ports tab 3-42
process block labels 3-40
properties

AddInputRegister 6-2
AddOutputRegister 6-3
AddPipelineRegisters 6-4
advanced coding 5-4
as input parameters 1-8
BlockGenerateLabel 6-5
CastBeforeSum 6-6
ClockEnableInputPort 6-7
ClockEnableOutputPort 6-8
ClockHighTime 6-9
ClockInputPort 6-10
ClockInputs 6-11
ClockLowTime 6-12
ClockProcessPostfix 6-13
coding 5-4

CoeffMultipliers 6-14
CoeffPrefix 6-15
DALUTPartition 6-17
DARadix 6-18
EDAScriptGeneration 6-19
EntityConflictPostfix 6-20
ErrorMargin 6-21
file location 5-2
file naming 5-2
FIRAdderStyle 6-22
ForceClock 6-23
ForceClockEnable 6-24
ForceReset 6-25
HDLCompileInit 6-26
HDLCompileTerm 6-27
HDLCompileVerilogCmd 6-28
HDLCompileVHDLCmd 6-29
HDLSimCmd 6-30
HDLSimInit 6-31
HDLSimTerm 6-32
HDLSimViewWaveCmd 6-36
HDLSynthCmd 6-33
HDLSynthInit 6-34
HDLSynthTerm 6-35
header comment 5-3
HoldTime 6-37
InlineConfigurations 6-39
InputPort 6-40
InputType 6-41
InstanceGenerateLabel 6-42
language selection 5-2
LoopUnrolling 6-43
Name 6-44
naming 5-3
optimization 5-6
OptimizeForHDL 6-45
OutputGenerateLabel 6-46
OutputPort 6-47
OutputType 6-48
PackagePostfix 6-49

Index-7

Index

port 5-3
ReservedWordPostfix 6-50
reset 5-2
ResetAssertedLevel 6-51
ResetInputPort 6-52
ResetType 6-53
ReuseAccum 6-55
SafeZeroConcat 6-56
ScaleWarnBits 6-57
script generation 5-7
SerialPartition 6-58
SimulatorFlags 6-59
SplitArchFilePostfix 6-60
SplitEntityArch 6-61
SplitEntityFilePostfix 6-62
TargetDirectory 6-63
TargetLanguage 6-64
test bench 5-6
TestBenchName 6-65
TestBenchStimulus 6-66
TestBenchUserStimulus 6-68
UseAggregatesForConst 6-69
UserComment 6-70
UseRisingEdge 6-71
UseVerilogTimescale 6-73
VerilogFileExtension 6-74
VHDLFileExtension 6-75

Q
quantization noise 3-46
quantized filters 1-6

R
registers

adding code for input 6-2
adding code for output 6-3
adding for optimization 6-4
pipeline 3-81

Represent constant values by aggregates
option 3-48

requirements
identifying for HDL code and test

benches 3-15
product 1-10

Reserved word postfix option 3-37
reserved words

setting postfix for resolution of 3-37
specifying postfix for 6-50

ReservedWordPostfix property 6-50
Reset asserted level option 3-30
reset input port 6-52

naming 3-42
Reset port options 3-42
reset properties 5-2
Reset type option 3-29
ResetAssertedLevel property 6-51
ResetInputPort property 6-52
resets

configuring for test benches 3-101
customizing 3-29
defaults for 3-11
setting asserted level for from command

line 6-51
setting asserted level for from GUI 3-30
setting style of 3-29
specifying forced 6-25
types of 6-53

ResetType property 6-53
ReuseAccum property 6-55
rising_edge function 3-50

S
SafeZeroConcat property 6-56
scale values 3-46
ScaleWarnBits property 6-57
script generation properties 5-7
second-order section (SOS) filters 1-6

Index-8

Index

sections
instance 6-42

SerialPartition property 6-58
simulator 4-7
SimulatorFlags property 6-59
SOS filters 1-6
Split arch. file postfix option 3-26
Split entity and architecture option 3-26
Split entity file postfix option 3-26
SplitArchFilePostfix property 6-60
SplitEntityArch property 6-61
SplitEntityFilePostfix property 6-62
stimulus

setting for test benches 3-106
specifying 6-66
specifying user-defined 6-68

subtraction operations
specifying input type treatment for 3-55
type casting 6-6

summation technique 6-22
symmetric FIR filters 1-6
synchronous resets

setting from command line 6-53
setting from GUI 3-29

synthesis 3-83

T
Target directory option

redirecting output with 3-24
renaming test bench file with 3-95

target language 3-21
TargetDirectory property 6-63
TargetLanguage property 6-64
test bench

generation of 7-6
test bench files 3-10
test bench properties 5-6
test benches

compiling 4-7

configuring clock for 3-99
configuring resets for 3-101
customizing 3-95
defaults for 3-13
error margin for 6-21
generated HDL output for 1-9
generating .do file 4-12
HDL 4-3
naming 6-65
renaming 3-95
running 4-8
setting error margin for 3-104
setting input data hold time 3-103
setting names of 3-23
setting stimuli for 3-106
specifying clock enable input for 6-24
specifying forced clock input for 6-23
specifying forced resets for 6-25
specifying stimulus for 6-66
specifying type of 3-97
specifying user-defined stimulus for 6-68

test methods 4-2
TestBenchName property 6-65
TestBenchStimulus property 6-66
TestBenchUserStimulus property 6-68
time

clock high 6-9
clock low 6-12
hold 6-37

timescale directives
specifying use of 6-73
suppressing 3-54

transposed Direct Form I filters 1-6
transposed Direct Form II filters 1-6
transposed FIR filters 1-6
tree FIR final summation 3-60
tutorial files 2-2
tutorials 1-13

basic FIR filter 2-3
IIR filter 2-44

Index-9

Index

optimized FIR filter 2-23
type casting 6-6

for addition and subtraction
operations 3-55

U
Use ’rising_edge’ for registers option 3-50
Use Verilog `timescale directives option 3-54
UseAggregatesForConst property 6-69
User defined response option 3-106
UserComment property 6-70
UseRisingEdge property 6-71
UseVerilogTimescale property 6-73

V
Verilog 1-2

file extension 6-74
selecting 3-21

Verilog file extension option

naming filter file with 3-23
renaming test bench file with 3-95

Verilog reserved words 3-37
Verilog test benches 3-97
VerilogFileExtension property 6-74
VHDL 1-2

file extension 6-75
selecting 3-21

VHDL file extension option
naming filter file with 3-23
renaming test bench file with 3-95

VHDL reserved words 3-37
VHDL test benches 3-97
VHDLFileExtension property 6-75

Z
zeros

concatenated 3-53

Index-10

	toc
	Getting Started
	What Is Filter Design HDL Coder?
	Expected Users
	Key Features and Components
	FDATool Plug-In — the GUI
	Command-Line Interface
	Quantized Filters — the Input
	Filter Properties — Input Parameters
	Generated HDL Files — the Output

	Installation
	Checking Product Requirements
	VHDL and Verilog Language Support

	Installing the Software

	Getting Help with Filter Design HDL Coder
	Information Overview
	Online Help
	Using “What's This?” Context-Sensitive Help
	Demos and Tutorials

	Applying Filter Design HDL Coder to the Hardware Design Process

	Tutorials: Generating HDL Code for Filters
	Creating a Directory for Your Tutorial Files
	Basic FIR Filter Tutorial
	Designing a Basic FIR Filter
	Quantizing the Basic FIR Filter
	Configuring and Generating the Basic FIR Filter's VHDL Code
	Getting Familiar with the Basic FIR Filter's Generated VHDL Code
	Verifying the Basic FIR Filter's Generated VHDL Code

	Optimized FIR Filter Tutorial
	Designing the FIR Filter
	Quantizing the FIR Filter
	Configuring and Generating the FIR Filter's Optimized Verilog Co
	Getting Familiar with the FIR Filter's Optimized Generated Veril
	Verifying the FIR Filter's Optimized Generated Verilog Code

	IIR Filter Tutorial
	Designing an IIR Filter
	Quantizing the IIR Filter
	Configuring and Generating the IIR Filter's VHDL Code
	Getting Familiar with the IIR Filter's Generated VHDL Code
	Verifying the IIR Filter's Generated VHDL Code

	Generating HDL Code for a Filter Design
	Overview of Generating HDL Code for a Filter Design
	Opening the Generate HDL Dialog Box
	What Is Generated by Default?
	Default Settings for Generated Files
	Default Generation of Script Files
	Default Settings for Register Resets
	Default Settings for General HDL Code
	Default Settings for Code Optimizations
	Default Settings for Test Benches

	What Are Your HDL Requirements?
	Setting the Target Language
	Setting the Names and Location for Generated HDL Files
	Setting Filter Entity and General File Naming Strings
	Redirecting Filter Design HDL Coder Output
	Setting the Postfix String for VHDL Package Files
	Splitting Entity and Architecture Code into Separate Files

	Customizing Reset Specifications
	Setting the Reset Style for Registers
	Setting the Asserted Level for the Reset Input Signal

	Customizing the HDL Code
	Specifying a Header Comment
	Specifying a Prefix for Filter Coefficients
	Setting the Postfix String for Resolving Entity or Module Name C
	Setting the Postfix String for Resolving HDL Reserved Word Confl
	Setting the Postfix String for Process Block Labels
	Naming HDL Ports
	Specifying the HDL Data Type for Data Ports
	Suppressing Extra Input and Output Registers
	Minimizing Quantization Noise for Fixed-Point Filters
	Representing Constants with Aggregates
	Unrolling and Removing VHDL Loops
	Using the VHDL rising_edge Function
	Suppressing the Generation of VHDL Inline Configurations
	Specifying VHDL Syntax for Concatenated Zeros
	Suppressing Verilog Time Scale Directives
	Specifying Input Type Treatment for Addition and Subtraction Ope

	Setting Optimizations
	Optimizing Generated Code for HDL
	Optimizing Coefficient Multipliers
	Optimizing Final Summation for FIR Filters
	Speed vs. Area Optimizations for FIR Filters
	Parallel and Serial Architectures
	Specifying Speed vs. Area Tradeoffs via generatehdl Properties
	Selecting Parallel and Serial Architectures in the Generate HDL

	Distributed Arithmetic for FIR Filters
	Distributed Arithmetic Overview
	Requirements and Considerations for Generating Distributed Arith
	DALUTPartition Property
	DARadix Property
	Special Cases
	Distributed Arithmetic Options in the Generate HDL Dialog Box

	Optimizing the Clock Rate with Pipeline Registers
	Setting Optimizations for Synthesis

	Generating Code for Multirate Filters
	Supported Multirate Filter Types
	Generating Mutirate Filter Code
	Code Generation Options for Multirate Filters
	Setting the Clock Enable Output Name
	Generating Test Bench Code for Multirate Filters
	generatehdl Properties for Multirate Filters

	Generating Code for Cascade Filters
	Supported Cascade Filter Types
	Generating Cascade Filter Code
	Rules and Limitations for Code Generation with Cascade Filters

	Customizing the Test Bench
	Renaming the Test Bench
	Specifying a Test Bench Type
	Configuring the Clock
	Configuring Resets
	Setting a Hold Time for Data Input Signals
	Setting an Error Margin for Optimized Filter Code
	Setting Test Bench Stimuli

	Generating the HDL Code
	Generating Scripts for EDA Tools
	Enabling and Disabling Script Generation
	Default Script Generation
	Customizing Script Names
	Customizing Script Code
	Example

	Mixed-Language Scripts

	Testing a Filter Design
	Overview of the Test Methods
	Testing with an HDL Test Bench
	Generating the Filter and Test Bench HDL Code
	Starting the Simulator
	Compiling the Generated Filter and Test Bench Files
	Running the Test Bench Simulation

	Testing with a ModelSim Tcl/Tk .do File
	Generating the Filter HDL Code and Test Bench .do File
	Starting ModelSim
	Compiling the Generated Filter File
	Execute the ModelSim .do File

	Properties — By Category
	Language Selection Properties
	File Naming and Location Properties
	Reset Properties
	Header Comment and General Naming Properties
	Port Properties
	Advanced Coding Properties
	Optimization Properties
	Test Bench Properties
	Script Generation Properties

	Properties — Alphabetical List
	Functions — Alphabetical List
	Examples
	Tutorials
	Basic FIR Filter Tutorial
	Optimized FIR Filter Tutorial
	IIR Filter Tutorial
	Speed vs. Area Optimizations for FIR Filters

	Index

	tables
	HDL Requirements Checklist
	VHDL Reserved Words
	Verilog Reserved Words

